Lesson 4: Scientific Notation

In the last section you learned how to use sig digs in your calculations.

- What do you do if you multiply numbers like 537 x $269=144453 \ldots$ you are supposed to only have three sig digs, but your answer sure has more than three sig digs! We need a way to show the correct number of sig digs.
- What if you have a large number like 4503443661 km (the distance from Neptune to the sun), or a small number like 0.000000000100 m (the diameter of an atom) and you don't want to be bothered with writing

Note: Numbers written this "normal" way are called standard notation. out all those zeros? We need a way to show really big and really small numbers.

To get around these problems, we use Scientific Notation (sometimes called Exponential Notation).

- This system makes use of powers of 10 , raising 10 to whatever value you need.
- You can get either really big numbers by using positive powers like $10^{5}=100000$
- You can also show really small numbers by using negative powers like $10^{-5}=0.00001$

Example 1:

$$
\begin{aligned}
& 10^{5}=10 \times 10 \times 10 \times 10 \times 10=100000 \\
& 10^{-5}=\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}=0.00001
\end{aligned}
$$

Don't worry about spending half a minute using your calculator to figure out what 10^{5} equals. When you do this stuff correctly on your calculator it will all be taken care of, no need to change it to standard notation.

Converting Standard Numbers into Scientific Notation

When you use scientific notation, follow these rules. We'll try them out on the numbers from the start of the lesson ...

1. Move the decimal over so that only one non-zero number is to the left of the decimal.

$$
\begin{aligned}
& 4503443661 \text { => } 4.503443661 \\
& 0.000000000100 \text { => } 0000000001.00
\end{aligned}
$$

2. Count how many spaces over you moved the decimal. If you moved it to the left it's positive, if you moved it to the right it's negative.
$4.503 \mathbf{4 4 3} \mathbf{6 6 1}=>$ moved 9 spaces left (+9)
$0000000001.00=>$ moved 10 spaces right ($\mathbf{(1 0)}$
3. Get rid of any numbers that are not sig digs. This depends on the numbers you used in your calculation.

$4.500000000000=>4.5$

Let's assume that I only actually trust the first couple of sig digs.

0000000001.00 => 1.00

I'll keep this last two zeroes, giving it three sig digs. Since it was written in the original number for such a small number, they're probably significant.
4. Write down the number, multiplied by 10 to the power of however many spaces you found in step 2.

$$
\begin{aligned}
& 4503443661=4.5 \times 10^{9} \\
& 0.000000000100=1.00 \times 10^{-10}
\end{aligned}
$$

If you ever need to change a number in scientific notation back to standard notation, do the reverse of the above.

Scientific Notation on Your Calculator

Most calculators now have a key on them for doing scientific notation. Look for one of the following...

> EXP (most Casio calculators)

EE (TI 83, 84, and Nspire calculators. You have to use the 2nd function key to use it on the older 83 's and 84 's)

On your calculator, type in the question as it's written.

- Remember, the calculator doesn't care about sig digs... it's up to you to round off the answer.
- Most of the time you'll be dealing with multiplying and dividing Scientific Notation, which makes it easier to figure out the sig digs.
- Use the rules we covered for sig digs, but don't look at the 10 to whatever power part... it does not count for sig digs.
- So a number like 4.5×10^{9} has only two sig digs. Only the numbers to the left of the " x " are counted for sig digs.
- If you have to type in a negative number, use the (-) button on the calculator, not the subtraction button.

Example 2: Determine the answer to the following question.

$$
4.587 \times 10^{4} \div 1.2 \times 10^{-3}=\mathbf{3 . 8} \times \mathbf{1 0}^{7}
$$

If you're using a TI graphing calculator, you'll notice that it shows scientific notation with an "E" (for exponent). Example 2 would look like this on your display...

Illustration 1: TI:83 Calculator
To make typing scientific notation easier for me on this site, I will be using a style similar to the way a TI graphing calculator would show the numbers. For example, I'll be typing 3.8e7 instead of 3.8×10^{7}.

Video Killed the Radio Star!

It's really easy to mix up typing a set of numbers on your calculator using scientific notation. Click on one of these links to watch how to do it on the model of calculator you have:

Casio Calcultor
TI 83 , TI 84 , or an older Nspire with the 84 Faceplate TI Nspire CX

Casio Calculator

TI 83 and TI 84

TI Nspire CX

