Lesson 41: Power

The word "power" is most often associated with electricity in everyday use, but this is not the case in physics.

- Power is the rate at which work is done.
- This means that power measures how quickly energy is being used.
- Since it is the rate at which something is happening, time must be involved somehow.
- If you look at the basic formula for power, you'll see that it is the same as many formulas that involve time.

$$
P=\frac{W}{t}=\frac{\Delta E}{t} \quad \begin{aligned}
& \\
& P=\text { power (Watts) } \\
& W=\Delta \mathrm{E}=\text { work (Joules) } \\
& \mathrm{t}=\text { time (seconds) }
\end{aligned}
$$

Power is really how fast you are using up energy, so it could be measured in Joules per second.

- In honour of his search for a more efficient engine (which was better at converting energy!), the unit for power is called the Watt after James Watt.
- Think of a light bulb... you always talk about how many Watts the bulb is, like a 60 W bulb.
- That just means that the light bulb is using 60 Joules of energy every second.

Example 1: I left a 150 W bulb on for 2.5 hours. Determine how much electricity I used.

In this case the electricity (electrical energy) is being changed into heat and light...that's the work done!

$$
\begin{gathered}
P=\frac{\Delta E}{t} \\
\Delta E=P t \\
\Delta E=150(9.0 \mathrm{e} 3) \\
\Delta E=1.35 \mathrm{e} 6=1.4 \mathrm{e} 6 \mathrm{~J}
\end{gathered}
$$

You used over a million Joules of energy!!!
In many questions we need to look at situations where an motor is lifting something at a constant velocity.

- The difference between motors is that a higher power motor will be able to move the load faster.
- We can see this if we start to play with the formula a bit.

$$
\begin{aligned}
& P=\frac{W}{t} \quad \text { Since } v=\mathrm{d} / \mathrm{t}, \text { we can substitue it out. } \\
& P=\frac{F d}{t} \\
& P=F V
\end{aligned}
$$

- You can only use this in situations where the object is being moved at a constant velocity.

Example 2: A 200 W motor is being used to lift shingles at a constant velocity to the top of a roof. If one pack of shingles has a 28 kg mass, determine the velocity that the pack will be raised at.

If the shingles are being raised at a constant velocity, then the net force acting on the pack is zero (any net force would cause acceleration).

$$
\begin{gathered}
F_{N E T}=F_{a}+F_{g} \\
0=F_{a}+F_{g} \\
F_{a}=-F_{g} \\
F_{a}=-m g \\
F_{a}=-28(-9.81)=274.68 \mathrm{~N}
\end{gathered}
$$

Now we can calculate the velocity...

$$
\begin{gathered}
P=F v \\
v=\frac{P}{F} \\
v=\frac{200}{274.68} \\
v=0.72812=0.73 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Example 3: The power output of a car is usually measured in the non-metric unit horsepower (hp). A car that we are looking at has an engine rated at 120 hp , which is the same as 8.95 e 4 W . If the car is moving against air resistance of 4.00 e 3 N at a constant velocity, determine how fast the car is moving.

$$
\begin{gathered}
F_{N E T}=F_{a}+F_{f} \\
0=F_{a}+F_{f} \\
F_{a}=-F_{f}=-(-4.00 \mathrm{e} 3)=4.00 \mathrm{e} 3 \mathrm{~N} \\
P=F v \\
v=\frac{P}{F} \\
v=\frac{8.95 \mathrm{e} 4}{4.00 \mathrm{e} 3} \\
v=22.375=22.4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Homework

p325 \#1-3
p328 \#3, 4

