Lesson 54: Fluids (AP Only)

Fluids

The word **fluid** will most often make people think about some kind of liquid.

- In physics, fluid can refer to either a gas or a liquid.
 - This is because, although they are different, both gases and liquids can flow and will change shape to match whatever container they are in.
- The biggest difference between them is that we usually think of a liquid as **incompressible**, whereas gases are **compressible**.
 - This just means that if I have a liquid in a container and try to squish it to a smaller volume, I won't be able to. If it was a gas in the container I would probably have a lot more luck getting it to squish at least a bit.

Hydrostatics

Hydrostatics is the study of fluids at rest.

- We know that at a microscopic level the molecules are in constant motion (at least a bit), but we are looking at the fluid at a macroscopic level.
 - Imagine a cup of water sitting on the table. The water appears to be at rest, since we do not see it flowing. This is a **static fluid**.
- We will also assume that any solid in contact with a static fluid is also at rest.
 - This could be the sides of a container holding the fluid, or any solid that we put in the fluid.

Density

The same volume of two different fluids can have very different masses because they have different densities.

- Density is the mass (in kilograms) of an object per volume (in metres cubed).
- The symbol for density is the Greek letter rho, ρ, which looks like a lower case p.

\[
\rho = \frac{m}{V}
\]

\[\rho = \text{density (kg/m}^3)\]

\[m = \text{mass (kg)}\]

\[V = \text{volume (m}^3)\]

Example 1: Mercury is the only metal that is a liquid at room temperature. It has a density of 1.36e4 kg/m³. If you had 27.0 g of mercury, **determine** the volume it would take up.

\[
\rho = \frac{m}{V}
\]

\[V = \frac{m}{\rho}\]

\[V = \frac{0.027}{1.36e4}\]

\[V = 1.99e-6 m³\]
The density of water at 4°C is often used as a standard by which we compare other densities.

- The density of water is 1.000e3 kg/m³.
- If you want to compare another substance's density to water, you divide its density by the density of water.
 - This value is called the **specific gravity**.
 - Specific gravity has no units (since they cancel out in the division).
 - It's just a way of saying how many times heavier a substance is compared to water.

Example 2: Determine the specific gravity of mercury.

From the last example we know that mercury has a density of 1.36e4 kg/m³.

\[
Specific \ gravity = \frac{\rho_{\text{mercury}}}{\rho_{\text{water}}} \\
Specific \ gravity = \frac{1.36e4}{1.000e3} \\
Specific \ gravity = 13.6
\]

Example 3: Blood has a specific gravity of 1.06, just slightly higher than the density of water itself. If the average adult body has about 5.20e-3 m³ of blood, determine the weight of the blood.

First convert the specific gravity to a regular measurement of density...

\[
\rho_{\text{blood}} = \rho_{\text{water}} \times (\text{specific gravity}) \\
\rho_{\text{blood}} = 1.000e3 \times (1.06) \\
\rho_{\text{blood}} = 1.06e3 \text{ kg/m}^3
\]

Now we can use our formula for calculating weight (\(F_g\)) and a little substitution to get the final answer...

\[
F_g = mg \quad \Rightarrow \quad \rho = \frac{m}{V} \\
F_g = mg \quad \Rightarrow \quad m = \rho V \\
F_g = \rho V g \\
F_g = 1.06e3 \times (5.20e-3) \times (9.81) \\
F_g = 54.1 \text{ N}
\]

By solving the density formula for mass, we can substitute it into the weight formula.