1-D Conservation of Momentum

It's possible to measure the momentum of any number of objects before and after they collide.

- For now we will only look at how to figure out problems with two objects in a head-on collision, called either 1 dimensional or linear collisions.
- It was noticed in Newton's time that the total momentum of all objects before a collision equals the total momentum of all objects after.
- To this day the Conservation of Momentum remains a fundamental law of physics.

Note: We will be using the symbol "prime" (a little tick like this ') to represent "after the collision."

Before the Collision	After the Collision
momentum of object "a" $=\mathrm{p}_{\mathrm{a}}$	momentum of object "a" $=\mathrm{p}_{\mathrm{a}}{ }^{\prime}$
momentum of object "b" $=\mathrm{p}_{\mathrm{b}}$	momentum of object " b " $=\mathrm{p}_{\mathrm{b}}{ }^{\prime}$

So, a formula for two objects that collide would look like...

$$
\begin{aligned}
\mathrm{p}_{\text {total }} & =\mathrm{p}_{\text {total }}{ }^{\prime} \\
\mathrm{p}_{\mathrm{a}}+\mathrm{p}_{\mathrm{b}} & =\mathrm{pa}_{\mathrm{a}}{ }^{\prime}+\mathrm{p}_{\mathrm{b}}{ }^{\prime} \\
\mathrm{m}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}+\mathrm{m}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}} & =\mathrm{m}_{\mathrm{a}} \mathrm{Va}^{\prime}+\mathrm{m}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}}{ }^{\prime}
\end{aligned}
$$

You do have to be careful with how you solve these collision problems

- After the collision the two objects might bounce apart (Example 1)
- Or the objects might stick together (Example 2).

Example 1: Objects bounce apart

A 0.15 kg blue billiard ball moving at $8.0 \mathrm{~m} / \mathrm{s}$ to the right hits a similar red billiard ball at rest. If the blue ball continues to move to the right at $2.5 \mathrm{~m} / \mathrm{s}$, determine the velocity of the red ball.

$$
\begin{gathered}
\mathrm{p}_{\text {total }}=\mathrm{p}_{\text {total }}^{\prime} \\
\mathrm{p}_{\mathrm{b}}+\mathrm{p}_{\mathrm{r}}=\mathrm{p}_{\mathrm{b}}^{\prime}+\mathrm{p}_{\mathrm{r}}^{\prime} \\
\mathrm{m}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}}+\mathrm{m}_{\mathrm{r}} \mathrm{~V}_{\mathrm{r}}=\mathrm{m}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}}^{\prime}+\mathrm{m}_{\mathrm{r}} \mathrm{~V}_{\mathrm{r}}^{\prime} \\
0.15 \mathrm{~kg}(8.0 \mathrm{~m} / \mathrm{s})+0.15 \mathrm{~kg}(0 \mathrm{~m} / \mathrm{s})=0.15 \mathrm{~kg}(2.5 \mathrm{~m} / \mathrm{s})+0.15 \mathrm{~kg}\left(\mathrm{v}_{\mathrm{r}}^{\prime}\right) \\
\mathrm{V}_{\mathrm{r}}^{\prime}=5.5 \mathrm{~m} / \mathrm{s}[\text { right }]
\end{gathered}
$$

Example 2: Objects stick together

Two balls of clay, a blue one being 2.3 kg and the second red one being 5.6 kg , hit each other and stick together. If the blue one was moving to the right at $12 \mathrm{~m} / \mathrm{s}$, and the red was moving at $8.1 \mathrm{~m} / \mathrm{s}$ to the left, determine their final velocity.

