

nysics 30 Physics 30 Phy

Copyright 2000, the Crown in Right of Alberta, as represented by the Minister of Learning, Alberta Learning, Student Evaluation Branch, 11160 Jasper Avenue, Edmonton, Alberta T5K 0L2. All rights reserved. Additional copies may be purchased from the Learning Resources Distributing Centre.

Special permission is granted to **Alberta educators only** to reproduce, for educational purposes and on a non-profit basis, parts of this examination that do **not** contain excerpted material **only after the administration of this examination**.

Excerpted material in this examination **shall not** be reproduced without the written permission of the original publisher (see credits page, where applicable).

June 2000

Physics 30

Grade 12 Diploma Examination

Description

Time: This examination was developed to be completed in 2.5 h; however, you may take an additional 0.5 h to complete the examination.

This is a **closed-book** examination consisting of

- 37 multiple-choice and 12 numericalresponse questions, of equal value, worth 70% of the examination
- 2 written-response questions, of equal value, worth a total of 30% of the examination

This examination contains sets of related questions. A set of questions may contain multiple-choice and/or numerical-response questions.

A tear-out Physics Data Sheet is included near the back of this booklet. A Periodic Table of the Elements is also provided.

Note: The perforated pages at the back of this booklet may be torn out and used for your rough work. No marks will be given for work done on the tear-out pages.

Instructions

- You are expected to provide your own scientific calculator.
- Use only an HB pencil for the machine-scored answer sheet.
- Fill in the information required on the answer sheet and the examination booklet as directed by the presiding examiner.
- Read each question carefully.
- Consider all numbers used in the examination to be the result of a measurement or observation.
- When performing calculations, use the values of constants provided on the tear-out sheet. Do **not** use the values programmed in your calculator.
- If you wish to change an answer, erase **all** traces of your first answer.
- Do not fold the answer sheet.
- The presiding examiner will collect your answer sheet and examination booklet and send them to Alberta Learning.
- Now turn this page and read the detailed instructions for answering machine-scored and written-response questions.

Multiple Choice

- Decide which of the choices **best** completes the statement or answers the question.
- Locate that question number on the separate answer sheet provided and fill in the circle that corresponds to your choice.

Example

This examination is for the subject of

- A. science
- **B.** physics
- **C.** biology
- **D.** chemistry

Answer Sheet

Numerical Response

- Record your answer on the answer sheet provided by writing it in the boxes and then filling in the corresponding circles.
- If an answer is a value between 0 and 1 (e.g., 0.25), then be sure to record the 0 before the decimal place.
- Enter the first digit of your answer in the left-hand box and leave any unused boxes blank.

Examples

Calculation Question and Solution

If a 121 N force is applied to a 77.7 kg mass at rest on a frictionless surface, the acceleration of the mass will be m/s^2 .

(Record your three-digit answer in the numerical-response section on the answer sheet.)

$$a = \frac{F}{m}$$

 $a = \frac{121 \text{ N}}{77.7 \text{ kg}} = 1.557 \text{ m/s}^2$

Record 1.56 on the

answer sheet -

Calculation Question and Solution

A microwave of wavelength 16 cm has a frequency, expressed in scientific notation, of $\boldsymbol{b} \times 10^{w}$ Hz. The value of \boldsymbol{b} is (Record your two-digit answer in the numerical-response section on the answer sheet.)

$$f = \frac{c}{\lambda}$$

$$f = \frac{3.00 \times 10^8 \text{ m/s}}{0.16 \text{ m}} = 1.875 \times 10^9 \text{ Hz}$$

Record 1.9 on the answer sheet

6 7

8

1

2

5

6 6 6 (7) (7) (7)

888 99999

Correct-Order Question and Solution

When the following subjects are arranged in alphabetical order, the order is _____, ____, ____, ____, ____, and _____.

- 1 physics
- 2 biology
- 3 science
- 4 chemistry

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

Answer: 2413

Scientific Notation Question and Solution

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

Answer: $q = -1.6 \times 10^{-19} \text{ C}$

Written Response

- Write your answers in the examination booklet as neatly as possible.
- For full marks, your answers must address **all** aspects of the question.
- Descriptions and/or explanations of concepts must be correct and include pertinent ideas, diagrams, calculations, and formulas.
- Your answers must be presented in a well-organized manner using complete sentences, correct units, and significant digits where appropriate.
- Relevant scientific, technological, and/or societal concepts and examples must be identified and made explicit.

- 1. The following statements all relate to a collision between any two objects on a horizontal frictionless surface. Which of these statements is **always true**?
 - A. The kinetic energy of each object before and after the collision is the same.
 - **B.** The momentum of each object before and after the collision is the same.
 - **C.** The total momentum of the two objects before and after the collision is the same.
 - **D.** With respect to the surface, the gravitational potential energy of each object before and after the collision increases.
- **2.** A 500 g rock is thrown straight down from a bridge to the water 5.20 m below. If the rock strikes the water at a speed of 12.5 m/s, what was the initial speed of the rock?
 - **A.** 2.40 m/s
 - **B.** 7.36 m/s
 - **C.** 12.1 m/s
 - **D.** 16.1 m/s
- 3. The concept of mechanical energy deals with the idea that
 - A. mechanical energy is the amount of energy saved by a mechanical device
 - **B.** mechanical energy is the sum of potential and kinetic energy
 - **C.** potential energy and kinetic energy are always equal
 - **D.** mechanical energy is a vector quantity

Use the following information to answer the next two questions.

Foundation piles for tall buildings are hammered into the ground using a "piledriver." A pile-driver similar to the one shown below lifts a 900 kg hammer a distance of 3.50 m above the top of a pile, and then allows it to drop.

- 4. The magnitude of the impulse delivered by the hammer to the pile is
 - **A.** 61.8 kN·s
 - **B.** 30.9 kN·s
 - **C.** 7.46 kN·s
 - **D.** 3.73 kN·s

Use your recorded answer for Multiple Choice 4 to answer Numerical Response 1.*

Numerical Response

1. The impulse is delivered by this pile-driver in 2.10×10^{-3} s. The magnitude of the force that the hammer exerts on the pile, expressed in scientific notation, is $\boldsymbol{b} \times 10^{w}$ N. The value of \boldsymbol{b} is _____.

(Record your **three-digit answer** in the numerical-response section on the answer sheet.) ***You can receive marks for this question even if the previous question was answered incorrectly.** Use the following information to answer the next two questions.

A particular supertanker is fully loaded with oil and has a mass of 1.00×10^9 kg. The supertanker has a cruising speed of 20.0 km/h. One way to stop the ship is to reverse its engines. At maximum reverse thrust, the ship takes 32.0 min to stop.

Numerical Response

2. The momentum of the supertanker at cruising speed, expressed in scientific notation, is $b \times 10^{w}$ kg·m/s. The value of **b** is _____.

(Record your three-digit answer in the numerical-response section on the answer sheet.)

Numerical Response

3. The kinetic energy of the supertanker at cruising speed, expressed in scientific notation, is $b \times 10^{w}$ J. The value of b is _____.

(Record your three-digit answer in the numerical-response section on the answer sheet.)

- 5. An empty freight car of mass m coasts along a track at 2.00 m/s until it couples to a stationary freight car of mass 2m. The final speed of the two freight cars immediately after collision is
 - **A.** 1.50 m/s
 - **B.** 1.33 m/s
 - **C.** 1.15 m/s
 - **D.** 0.667 m/s

Use the following information to answer the next three questions.

On July 16, 1994, one of the fragments of comet Shoemaker-Levy 9 entered Jupiter's atmosphere travelling at 60.0 km/s.

As a comet fragment approaches a planet and before it enters the atmosphere, it gains kinetic energy according to the formula

$$\Delta E_{\rm k} = GM_{\rm p}m\left(\frac{1}{r_{\rm f}} - \frac{1}{r_{\rm i}}\right)$$

where G = gravitational constant

 $M_{\rm p} = {\rm mass}$ of the planet

m = mass of the fragment

r = distance from the centre of the planet to the fragment

As the fragment approached Jupiter's surface, the atmosphere became too dense for the fragment to push through. The fragment's tremendous kinetic energy was dissipated in an enormous explosion.

The mass of Jupiter is 318 times the mass of Earth. The mass of the comet fragment was 6 000 kg.

- **6.** The kinetic energy of the comet fragment as it entered into Jupiter's atmosphere was
 - **A.** $1.08 \times 10^7 \text{ J}$
 - **B.** 1.80×10^8 J
 - **C.** $1.80 \times 10^{11} \text{ J}$
 - **D.** 1.08×10^{13} J

Numerical Response

4.

The increase in kinetic energy of the Shoemaker-Levy 9 comet fragment as it moved from 8.50×10^9 m to 1.00×10^8 m from the centre of Jupiter, expressed in scientific notation, was $b \times 10^w$ J. The value of b is _____.

(Record your three-digit answer in the numerical-response section on the answer sheet.)

- 7. When the comet fragment's kinetic energy was dissipated in the explosion, most of this energy was converted to
 - A. potential and kinetic energy
 - **B.** chemical energy only
 - C. light and heat
 - **D.** light only

Use the following information to answer the next question.

- 8. The speed of the red rock, after contact, is
 - **A.** 0.15 m/s
 - **B.** 0.22 m/s
 - **C.** 0.33 m/s
 - **D.** 0.39 m/s

- **9.** A rock climber falls and is saved from injuries by a climbing rope that is slightly elastic. The importance of the elasticity of the climbing rope can be understood in terms of impulse because elasticity results in
 - A. decreased force during an increased time interval
 - **B.** increased force during an increased time interval
 - **C.** decreased force during a decreased time interval
 - **D.** increased force during a decreased time interval
- **10.** Two boys, Ted and Larry, initially at rest, push each other apart on a frictionless surface. Ted has a mass of 40 kg and Larry has a mass of 60 kg. After the boys push each other apart, Ted has a speed of 6 m/s. As the boys move apart, Larry has
 - **A.** more momentum than Ted
 - **B.** less momentum than Ted
 - **C.** more kinetic energy than Ted
 - **D.** less kinetic energy than Ted

Use the following information to answer the next two questions.

- 11. The effective current in each speaker at this setting is
 - **A.** 1.88 A
 - **B.** 2.65 A
 - **C.** 3.75 A
 - **D.** 5.30 A

Use your recorded answer for Multiple Choice 11 to answer Numerical Response 5.*

Numerical Response

5. The average power dissipated in each speaker at this setting, expressed in scientific notation, is $b \times 10^{w}$ W. The value of b is ______.

(Record your **three-digit answer** in the numerical-response section on the answer sheet.) ***You can receive marks for this question even if the previous question was answered incorrectly.**

Use the following information to answer the next two questions.

One type of air cleaner uses a single-stage electrostatic precipitator to remove very fine particles, such as cigarette smoke and pollen, from the air in a room. The first grid, marked as X in the diagram, removes electrons from the particles through a combination of friction and electrostatic action. The particles pass through grid X and leave with a positive charge. The positively charged particles are then removed from the air stream by a negatively charged grid, marked as Y in the diagram. This cleaner also contains a pre-filter and a carbon filter to help remove dust and odours.

- 12. When particles are between grids *X* and *Y*, they are repelled by
 - A. grid X and each other, but are attracted to grid Y
 - **B.** grid *Y* and each other, but are attracted to grid *X*
 - C. grid X but are attracted to each other and grid Y
 - **D.** grid *Y* but are attracted to each other and grid *X*

- 13. An electric field of magnitude 7.17×10^4 N/C is maintained between the grids of the electrostatic precipitator. The distance between grids X and Y is 5.60 cm. The potential difference across grids X and Y is
 - **A.** $1.28 \times 10^6 \text{ V}$
 - **B.** 4.02×10^5 V
 - **C.** 1.28×10^4 V
 - **D.** 4.02×10^3 V

- 14. The magnitude of the **net** force on sphere *X*, due to spheres *Y* and *Z*, is
 - **A.** 9.0 N
 - **B.** 12 N
 - **C.** 18 N
 - **D.** 24 N

Magnetic Resonance Imaging

Magnetic resonance imaging is used in medicine to produce images of a body's internal structures and tissues. This imaging technique relies on the interaction of nuclei with an external magnetic field.

When a hydrogen atom is placed in a magnetic field, it will absorb electromagnetic radiation (EMR) in the radio frequency range. The frequency absorbed varies as a function of the magnetic field strength.

Frequency as a Function of Magnetic Field Strength

15. The units of the gyromagnetic ratio will be

- A. $\frac{T}{MHz}$ B. $\frac{T}{s}$ C. $\frac{1}{T \cdot s}$
- **D.** T·MHz

Numerical Response

6.

When a hydrogen atom is placed in a magnetic field with a strength of 0.80 T, the EMR wavelength absorbed is ______ m.

(Record your two-digit answer in the numerical-response section on the answer sheet.)

- 16. A proton and an alpha particle have identical circular orbits in a magnetic field. The proton has a speed of 4.4×10^5 m/s. The speed of the alpha particle is
 - **A.** 1.1×10^5 m/s
 - **B.** 2.2×10^5 m/s
 - **C.** 4.4×10^5 m/s
 - **D.** 8.8×10^5 m/s
- 17. Extra-high-voltage lines carrying 600 kV are used to transmit electrical energy. A transformer must be used to reduce the voltage to 120 kV for use in a factory. If there are 500 turns on the primary coil, the number of turns on the secondary coil **and** the type of transformer used are, respectively,
 - **A.** 100 turns, step up
 - **B.** 2 500 turns, step up
 - **C.** 100 turns, step down
 - **D.** 2 500 turns, step down

Numerical Response

7. A small object carrying a charge of 3.47 μ C experiences an electric force of 7.22×10^{-2} N when placed at a distance, *d*, from a second, identically charged object. The value of *d* is _____ m.

(Record your three-digit answer in the numerical-response section on the answer sheet.)

Numerical Response

8. The number of excess electrons on a ball that has a charge of -3.60×10^{-17} C, expressed in scientific notation, is $a.bc \times 10^d$. The values of a, b, c, and d are _____, ____, ____, and _____.

(Record all four digits of your answer in the numerical-response section on the answer sheet.)

- 18. An electron accelerates from rest across the gap between charged parallel plates and reaches a final speed of v. If the potential difference across the plates is tripled, the final speed of an electron accelerating from rest across the gap will be
 - **A.** $\frac{1}{3}v$ **B.** $\frac{1}{\sqrt{3}}v$ **C.** $\sqrt{3}v$

D. 9*v*

19. X-rays are produced by

- **A.** an alternating current of about 10^{18} Hz
- **B.** firing gamma rays at a tungsten electrode
- C. varying the speed of electrons in a magnetic field
- **D.** collisions between high-speed electrons and a metal target

Use the following information to answer the next question.

In 1996, the space shuttle Columbia attempted to drag a conducting tether through Earth's magnetic field. The tether was 2.07×10^4 m long. The average magnitude of Earth's magnetic field perpendicular to the tether was 9.02×10^{-6} T. The speed of the shuttle and tether was 8.00×10^3 m/s, relative to Earth's magnetic field.

Numerical Response

9. The electric potential difference generated across the ends of the tether, expressed in scientific notation, was $a.bc \times 10^d$ V. The values of a, b, c, and d are _____, ____, ____, and _____.

(Record all four digits of your answer in the numerical-response section on the answer sheet.)

Use the following information to answer the next question.

- 20. In the circuit above, the voltmeter reads 90 V and the ammeter reads 1.5 A. The value of the resistor, R, will be
 - **A.** 11 Ω
 - **B.** 20 Ω
 - **C.** 30 Ω
 - **D.** 80 Ω

Use the following information to answer the next two questions.

The following data were recorded from the back of a small microwave oven that has only one power setting.

Input	120 V (60 Hz AC)
Power Consumption	900 W
Frequency of Microwaves	2 450 MHz
Output Power	450 W

- 21. During its operation, the microwave oven draws a current of
 - **A.** 0.133 A
 - **B.** 0.267 A
 - **C.** 3.75 A
 - **D.** 7.50 A

Numerical Response

10. The wavelength of the microwave radiation produced by the oven, expressed in scientific notation, is $a.bc \times 10^{-d}$ m. The values of a, b, c, and d are _____, ____, and _____.

(Record all four digits of your answer in the numerical-response section on the answer sheet.)

22. The path followed by a moving proton in an external magnetic field is shown in

- 23. A result that emerged from Einstein's work is the expression E = pc, where p is the magnitude of the momentum of a photon. The magnitude of the momentum of a 1.30×10^2 eV photon is
 - **A.** $6.93 \times 10^{-26} \text{ kg} \cdot \text{m/s}$
 - **B.** 2.08×10^{-17} kg·m/s
 - **C.** $8.20 \times 10^{-14} \text{ kg} \cdot \text{m/s}$
 - **D.** 4.33×10^{-7} kg·m/s

- 24. The magnitude of the magnetic force exerted on a charged particle in a magnetic field will be doubled by doubling **any one** of
 - **A.** the charge of the particle, or the speed of the particle, or the mass of the particle
 - **B.** the magnitude of the field or the angle of entry of the particle
 - C. the speed of the particle, or the mass of the particle, or the magnitude of the field
 - **D.** the charge of the particle, or the speed of the particle, or the magnitude of the field
- 25. One $\frac{N \cdot C \cdot m}{A \cdot m \cdot s}$ is the same as
 - **A.** 1 A
 - **B.** 1 N
 - **C.** 1 C
 - **D.** 1 J
- **26.** The particle nature of X-ray radiation is **best** demonstrated by the observation that X-rays
 - A. exhibit the Compton effect
 - **B.** have great penetrating ability
 - **C.** are diffracted by pure crystals
 - **D.** are not deflected by magnetic fields

Use the following information to answer the next two questions.

- 27. The maximum speed of the protons in Lawrence's cyclotron was
 - **A.** 1.5×10^{13} m/s
 - **B.** 1.7×10^8 m/s
 - **C.** 3.9×10^6 m/s
 - **D.** 9.8×10^{15} m/s

Use your recorded answer for Multiple Choice 27 to answer Multiple Choice 28.*

- **28.** The magnitude of the magnetic field used by Lawrence was
 - **A.** $6.3 \times 10^{-1} \text{ T}$
 - **B.** $2.7 \times 10^1 \text{ T}$
 - **C.** 2.4×10^6 T
 - **D.** $1.6 \times 10^9 \text{ T}$

*You can receive marks for this question even if the previous question was answered incorrectly.

II a a alla a fallandara	:f	4	
τις της τημηνιής	intormation	to answer the	ηρχτ πμρωτική
	<i>information</i>		
., ., ., ., ., ., ., ., ., ., ., ., ., .	./		1

nt of outer electrons to lower orbitals
tion of high-speed electrons
radioactive nuclei
of an armature in a generator

Numerical Response

11. Match each of the sources of electromagnetic radiation with the type of electromagnetic radiation it produces given below. Use each number only once.

Process:				
Туре:	Gamma rays	Visible light	X-rays	Extremely low frequency wave (AC)

(Record all four digits of your answer in the numerical-response section on the answer sheet.)

- **29.** An ice rink is lit by a bluish light with a wavelength of 500 nm. The period of the light is
 - **A.** 1.67×10^{-15} s
 - **B.** 8.33×10^{-13} s
 - **C.** 6.00×10^5 s
 - **D.** 6.00×10^{14} s

Numerical Response

12. The Compton Gamma Ray Observatory is a satellite that is able to detect electromagnetic radiation from throughout the universe. The Compton Observatory can detect photons ranging from 4.00×10^4 eV to 3.00×10^{10} eV. The highest frequency that can be detected, expressed in scientific notation, is $b \times 10^w$ Hz. The value of b is ______.

(Record your three-digit answer in the numerical-response section on the answer sheet.)

- **30.** Two scientists who conducted experiments that led to the determination of the mass of an electron were
 - A. Planck and Einstein
 - **B.** Rutherford and Bohr
 - **C.** Thomson and Millikan
 - **D.** Compton and de Broglie
- **31.** In the photoelectric equation, the symbol *W* represents the
 - A. energy gain of the target metal
 - **B.** wavelength of the incident radiation
 - **C.** maximum wavelength of an emitted electron
 - **D.** minimum energy required to release an electron from a metal
- **32.** Violet light striking the negative electrode in a phototube causes a current to flow in the tube. Under the same conditions, another form of light that will always cause a current to flow is
 - A. blue
 - **B.** green
 - C. infrared
 - **D.** ultraviolet

- **33.** A photon of UV-B light with a wavelength of 2.90×10^{-7} m strikes an electron in a hydrogen atom in its ground state. As a result, the electron will
 - **A.** be raised to energy level 2
 - **B.** be raised to energy level 3
 - **C.** be raised to energy level 5
 - **D.** not be raised to a higher energy level

Use the following information to answer the next question.

- 34. The work function of the material emitting the photoelectrons is
 - **A.** 2.0×10^{15} J
 - **B.** 1.3×10^{-18} J
 - **C.** 6.6×10^{-34} J
 - **D.** 0.0 J

Use the following information to answer the next three questions.

Some smoke detectors use the radioactive source americium-243 to ionize the air between two electric plates in a detection chamber. A 9.0 V battery in the detector causes a continuous current to flow between the plates. When smoke particles enter the chamber, they neutralize the ionized air molecules, which decreases the current and triggers an alarm.

- **35.** Typically, the 9.0 V battery used in this type of detector will transfer 200 C of charge in 1.0 years. The resistance of the circuit in the detector is
 - A. $1.4 \times 10^6 \Omega$
 - **B.** $5.9 \times 10^4 \Omega$
 - C. $3.9 \times 10^3 \Omega$
 - **D.** $7.0 \times 10^{-7} \Omega$
- **36.** If the air is ionized by alpha particles produced by the americium-243, what immediate byproduct would one expect to find?
 - A. Curium-243
 - **B.** Plutonium-243
 - C. Berkelium-247
 - **D.** Neptunium-239
- **37.** Americium-243 has a half-life of approximately 7 000 years. If a detector containing 20 mg of this isotope were discarded and then rediscovered 70 years later, approximately how much americium-243 would remain?
 - **A.** 20 mg
 - **B.** 0.20 mg
 - **C.** 2.0×10^{-7} mg
 - **D.** No measurable amount would remain.

The written-response questions follow on the next page.

A positively charged sphere is suspended by an insulating thread between two neutral parallel plates, I and II. The plates are connected by wire to a copper rod.

A student moves the copper rod to the right in an external magnetic field. The motion of the rod through the magnetic field causes electrons to move in the rod and induces a potential difference across the plates. The charged sphere moves toward one of the plates but does not come in contact with it.

Written Response — 15%

1. Explain the motion of the charged sphere. In your answer,

- describe and explain the movement of the electrons in terms of the direction of the motion of the copper rod through the magnetic field
- describe and explain the motion of the charged sphere in terms of the charges on it and on plates I and II
- describe a change to the apparatus or procedure that would cause the charged sphere to have a larger deflection toward the metal plate
- NOTE: Marks will be awarded for the physics principles used in your response and for the effective communication of your response.

Written-response question 2 begins on the next page.

The supernova known as SN1987A reached it maximum brightness, or luminosity (energy release per second), in mid-May 1987. After that, its luminosity decreased.

Decline in Luminosity in Supernova SN1987A

Time	Luminosity
(Days)	$(10^{35} \mathrm{W})$
0	1.000
50	0.638
100	0.407
150	0.260
200	0.166
250	0.106
300	0.067
350	0.043

The most likely reason that the luminosity decreased is that luminosity depends on the radioactive decay of isotopes created in the explosion. One source of the luminosity could be the gamma rays that result from any one of the decay chains listed in the following table.

Radioactive Decay Chains (Showing Half-Life and Gamma Ray Energy)

⁵⁶Ni
$$\xrightarrow{6.1 \text{ day}}{0.158 \text{ MeV}}$$
 ⁵⁶Co $\xrightarrow{77.3 \text{ day}}{1.238 \text{ MeV}}$ ⁵⁶Fe
⁵⁷Co $\xrightarrow{272 \text{ day}}{0.122 \text{ MeV}}$ ⁵⁷Fe
²²Na $\xrightarrow{2.605 \text{ year}}{1.275 \text{ MeV}}$ ²²Ne
⁴⁴Ti $\xrightarrow{67 \text{ year}}{0.0783 \text{ MeV}}$ ⁴⁴Sc $\xrightarrow{2.44 \text{ day}}{0.2712 \text{ MeV}}$ ⁴⁴Ca
⁶⁰Fe $\xrightarrow{1.5 \times 10^6 \text{ year}}{0.0586 \text{ MeV}}$ ⁶⁰Co $\xrightarrow{5.27 \text{ year}}{1.173 \text{ MeV}}$ ⁶⁰Ni
²⁶Al $\xrightarrow{7.1 \times 10^5 \text{ year}}{1.809 \text{ MeV}}$ ²⁶Mg

NOTE: The time provided above the arrow in each decay is the half-life. The energy provided below the arrow in each decay is the gamma ray energy.

Written Response — 15%

- **2.** Plot a graph of luminosity versus time.
 - Determine the half-life of the luminosity, and identify the single decay believed to be responsible for most of the energy released by the supernova.
 - The amount of radioactive nickel-56 predicted to have been created in the supernova is about 1.49×10^{29} kg. How many days would it take for the mass of nickel-56 to be reduced to 1.86×10^{28} kg?
 - The decay chain ${}^{60}\text{Fe} \rightarrow {}^{60}\text{Co} \rightarrow {}^{60}\text{Ni}$ shows two radioactive decays. Write the nuclear decay equation for iron-60. Provide the name of the particle emitted.
 - Identify the decay chain in the table that releases gamma rays with the shortest wavelength. Explain why you identified this decay chain, and calculate the shortest gamma wavelength.

Clearly communicate your understanding of the physics principles that you are using to solve this question. You may communicate this understanding mathematically, graphically, and/or with written statements.

You have now completed the examination. If you have time, you may wish to check your answers. Fold and tear along perforation.

PHYSICS DATA SHEET

CONSTANTS

-	
Э.	ļ
	i
20	
5	
	l
	l
2	
• – '	
t)	
S	
Ð	
l	
G	
÷	i
•	
- 27	
_	
с 5	
-	

letism

Acceleration Due to Gravity or 5ravitational Field Near Earth	$a_{\rm g}$ or $g = 9.81 {\rm m/s}^2$ or 9.81 N/kg
Gravitational Constant	$G = 6.67 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2 / \mathrm{kg}^2$
Aass of Earth	$M_{\rm e} = 5.98 \times 10^{24} \rm kg$
kadius of Earth	$R_{\rm e} = 6.37 \times 10^6 \rm m$
Coulomb's Law Constant	$k = 8.99 \times 10^9 \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$
3lectron Volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
3]ementary Charge	$e = 1.60 \times 10^{-19} \text{ C}$
ndex of Refraction of Air	n = 1.00
peed of Light in Vacuum	$c = 3.00 \times 10^8 \text{ m/s}$

Atomic Physics

Energy of an Electron in the 1st	
Bonr Urbit of Hydrogen	$E_1 = -2.18 \times 10$ J or -13.0 eV
Planck's Constant	$h = 6.63 \times 10^{-34}$ J·s or 4.14×10^{-15} eV·s
Radius of 1st Bohr Orbit of Hydrogen	$r_1 = 5.29 \times 10^{-11} \text{ m}$
Rydberg's Constant for Hydrogen	$R_{\rm H} = 1.10 \times 10^7 \frac{1}{ m m}$

Particles

	Rest Mass	Charge
Alpha Particle	$m_{\alpha} = 6.65 \times 10^{-27} \mathrm{kg}$	α^{2+}
Electron	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$	e
Veutron	$m_{\mathrm{n}} = 1.67 \times 10^{-27} \mathrm{kg}$	0 u
Proton	$m_{\rm D} = 1.67 \times 10^{-27} \rm kg$	+ d

Trigonometry and Vectors

For any Vector \vec{R}	$R = \sqrt{R_x^2 + R_y^2}$	$ \tan \theta = \frac{R_y}{R_x} $	$R_x = R\cos\theta$	$R_y = R\sin\theta$
opposite hypotenuse	adjacent hypotenuse	<u>opposite</u> adjacent	p = c	$\frac{\sin B}{\sin C} = \frac{1}{\sin C}$
$\sin\theta =$	$\cos\theta =$	$\tan \theta =$	a a	$\frac{1}{\sin A}$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Prefixes Used With SI Units

		Exponential		Exponential
Prefix S ₂	ymbol	Value	Prefix S ₁	ymbol Value
pico	d	$\dots 10^{-12}$	tera	T10 ¹²
nano	n	$\dots 10^{-9}$	giga	G10 ⁹
micro	μ	$\dots 10^{-6}$	mega	M10 ⁶
milli	ш	$\dots 10^{-3}$	kilo	$k = 10^{3}$
centi	с	$\dots 10^{-2}$	hecto	h10 ²
deci	d	$\dots 10^{-1}$	deka	da10 ¹

Tear-out Page

Kinematics		Waves and Light		Quantum Mechanics a	nd Nuclear Physics
$\vec{v}_{ave} = \frac{\vec{d}}{t}$	$\vec{d} = \vec{v}_{\rm f} t - \frac{1}{2} \vec{a} t^2$	$T = 2\pi \sqrt{\frac{m}{k}}$	$\frac{\sin\theta_1}{\sin\theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$	$E = mc^2$	$\frac{\chi}{\eta} = d$
$\vec{a} = \frac{\vec{v}_{\rm f} - \vec{v}_{\rm i}}{t}$	$\vec{d} = \left(\frac{\vec{v}_f + \vec{v}_i}{2}\right)t$	$T = 2\pi \sqrt{\frac{l}{g}}$	$\gamma = \frac{xd}{x}$		$p = \frac{hf}{c}; E = pc$
$d = v_i t + \frac{2}{2} a t^2$	$v_{\rm f}^2 = v_{\rm i}^2 + 2ad$	$T = \frac{1}{f}$	$\frac{nl}{dsin\theta}$	Electricity and Magnet	ism
$v = \frac{du}{T}$.	$a_{\rm c} = \frac{v^2}{r}$	$v = f\lambda$	$\lambda = \frac{1}{n}$	$F_{\rm e} = \frac{kq_1q_2}{r^2}$	V = IR
	$\int Gm_1m_2$	$\frac{\lambda_1}{2} = l; \ \frac{\lambda_1}{A} = l$	$m = \frac{n_i}{h_0} = \frac{-a_i}{d_0}$	$\left \vec{E} \right = \frac{kq_1}{z^2}$	P = IV
F = ma $\vec{F}\Delta t = m\Delta\vec{v}$	$F_g = \frac{r}{r^2}$	t 1	$\frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$	$E = \frac{F_{\rm c}}{C}$	$I = \frac{q}{t}$
$\vec{F}_{g} = m\vec{g}$	$g = \frac{1}{r^2}$			$\begin{vmatrix} \vec{E} \end{vmatrix} = \frac{V}{V}$	$F_{ m m}=IlB_{\perp}$
$F_{\rm f} = \mu F_{\rm N}$	$F_{\rm c} = \frac{mv^2}{r}$	Atomic Physics	~	$\nabla d = \Delta E$	$F_{\rm m} = qvB_{\perp}$
$\vec{F}_{\rm s} = -k\vec{x}$	$F_{\rm c} = \frac{4\pi^2 mr}{T^2}$	$hf = E_{\rm kmax} + W$ $W = hf_0$	$rac{1}{\lambda}=R_{ m H}igg(rac{1}{n_{ m f}^2}-rac{1}{n_{ m f}^2}igg)$	$V = \frac{V}{q}$ $R = R_{1} + R_{2} + R_{3}$	$V = lvB_{\perp}$
Momentum and Energy		$E_{k_{ m max}} = qV_{ m stop}$		$\frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	$\frac{N_{\rm p}}{N} = \frac{V_{\rm p}}{V} = \frac{I_{\rm s}}{I}$
$\vec{p} = m\vec{v}$	$E_{\rm k} = \frac{1}{2} mv^2$	r = h c	$E_n = \frac{1}{n^2} E_1$	$R = R_1 + R_2 + R_3$	$d_{T} = s_{A} = s_{AT}$
W = Fd	$E_{\rm p} = mgh$	$r = n = \frac{\gamma}{2}$	$r_n = n^2 r_1$	$I_{\rm eff} = 0.707 I_{\rm max}$	Veff = 0.101 V _{max}
$W = \Delta E = Fd \cos \theta$	$E_{\rm p} = \frac{1}{2}kx^2$		$N = N_0 \left(\frac{1}{2}\right)^n$		
	1				

EQUATIONS

 $P = \frac{W}{t} = \frac{\Delta E}{t}$

Fold and tear along perforation.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0	Ð			Ð			7			۲ ا			e			C		٦			٦.			ſ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18	VIIIA or	2 H	4.00	helium	10 N	20.17	neon	18 /	39.95	argon	36 4	83.80	krypton	54 ×	131.30	xenon	86 R	(222.02) radon				7 1	174.97	lutetium	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17	VIIA	_	_	_	L 6	19.00	luorine	17 CI	35.45	chlorine	35 Br	•9.90	romine	53 I	126.90	odine	35 At	(209.98) Istatine				70 Yb	173.04	ytterbium	
$ \frac{1}{10} \frac{2}{10} \frac{2}{10}$	16	VIA				0	6	/gen fr	S	06	phur c	e Se	2 96	enium t	: Te	7.60	urium i	⊸ Po	8.98) (Tm	3.93	lium	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	4				8 2	16.	en oxy	P 16	32.	horus sul	AS 34	78.	c sel	Sb 52	5 127	ony tell	Bi 84	8 (20 th poly	-			Er 69	3 16	ر thu	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	>				2 2	14.01	nitroge	i 15	30.97	phosp.	9 33	74.92	n arseni	ן 151	121.75	antimo	0 83	208.9				9 (8	167.2(erbiun	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	IVA				9	12.01	carbon	14	28.09	silicon	32 G(72.59	germaniur	50 Sr	118.69	tin	82 Pt	207.19 lead				67 Hc	164.93	holmium	l
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	IIIA				5 B	10.81	boron	13 AI	26.98	aluminum	31 Ga	69.72	gallium	49 In	114.82	indium	81 TI	204.37 thallium				66 Dy	162.50	dysprosium	
1 2 3 4 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 9 1 1 1 Name Benflum Benflum Benflum Name	12	B					Symbol			f the oe		30 Zn	55.38	zinc	48 Cd	112.41	cadmium	80 Hg	200.59 nercury				65 Tb	158.93	terbium	2
1 2 3 4 5 6 7 6 9 70 rdrogen	11	B				Key		6.94	lithium	Based on 6 C idicates mass o ost stable isotol		29 Cu	3.55 (opper 1	17 Ag	07.87	ilver	P An	196.97				34 Gd	57.25	adolinium 1	
1 2 3 4 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7	10	VIIB				Ľ		olar mass	Name —	че С		8 Ni	3.71 6	ckel c	• Pd •	06.40	alladium	8 Pt	35.09 1 atinum 9				3 Eu (51.96	uropium g	
1 2 3 4 5 6 7 8 1 1 4 Be viso	6	VIIB					Atomi	Atomic mc				S Co	3 58	alt niu	Rh 4	.91 10	lium pa	Ir 7	.22 15 In Dia	9 Une		lennium	Sm 6	35 15	arium eu	
1 2 3 4 5 6 7 8 or III III III III 4 Be vis vis vis 1 4 Be 9.01 inim beryllium visit visit visit visit 1 4 Be visit 4 4 Be visit 4 Be visit 4 Be 4 Be 4 Be 4 Be 4 Be 4 Be 5 4 F Be F <												-e 27	58.9	cobé	2U 45	102.	m rhod	77 S(192. iridiu	no 10 5	(266	umik	m ⁶²	150.	ium sam	2
1 2 3 4 5 6 7 M IA IA IA IA VB	8											26 F	55.85	iron	44 17	101.07	rutheniu	76 C	190.20 osmium	; 108 ∪	(265)	unniloctit	61 P	(144.91)	prometh	2
1 2 3 4 5 6 N IA IB VB VB VB VB 01 I 4 Be VB VB VB VB 01 I 4 Be VB VB VB VB 01 I 4 Ber/Nium Ber/Nium Ber/Nium Ber/Nium Ber/Nium 1 Na 12 MG 22 T 23 V 24 Cr 3:0 40.08 34.96 47.90 50.94 52.00 50.94 52.00 3:0 40.08 21 SC 21 SC 24 Cr 3:0 40.08 31.09 40.02 74 41 <nd< td=""> 42 MO 5.47 88.91 91.22 92.94 95.94 95.94 95.94 106um Athium scendium tamium varadium varadium chromium 7</nd<>	7	VIIB										25 Mn	54.94	manganese	43 TC	(98.91)	technetium	75 Re	186.21 rhenium	107 Uns	(262.12)	unnilseptium	60 Nd	144.24	neodymium	-
1 2 3 4 5 A IIA IIA IIA IIA VB VB <td>9</td> <td>VIB</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>24 Cr</td> <td>52.00</td> <td>chromium</td> <td>42 Mo</td> <td>95.94</td> <td>nolybdenum</td> <td>74 W</td> <td>183.85 tungsten</td> <td>106 Unh</td> <td>(263.12)</td> <td>unnilhexium</td> <td>59 Pr</td> <td>140.91</td> <td>raseodymium</td> <td></td>	9	VIB										24 Cr	52.00	chromium	42 Mo	95.94	nolybdenum	74 W	183.85 tungsten	106 Unh	(263.12)	unnilhexium	59 Pr	140.91	raseodymium	
1 2 3 4 A IA IIB NB NB 01 H IIB NB NB 01 H 1 4 Be 01 1 4 Be 0409en 9.01 Hum beryllium 1 Na 12 MG 29 X.01 12 MG 299 X.02 Z1 SC 310 40.08 44.96 5 310 40.08 247.90 5 347 87.62 88.91 91.22 357 87.63 88.91 91.22 35.03 56 Ba 57.71 72 5 56 88.91 91.22 91.22 32.91 178.49 1 178.49 1 5 5 5 5 5 5 32.02) (226.03) 104.Unq 1 138.91 <	5	ß										33 <	0.94	anadium	ND ND	2.91	iobium	3 Ta	80.95 t	105 Unp	262.11)	nnilpentium	8 Ce	40.12	erium p.	ŀ
1 2 3 1 IA IA IA IB IB 01 H IA IA IB IB 01 H IA IA IB IIB IIB 01 Hum beryllium beryllium beryllium beryllium 11 Na 12 Mg 2 2 2 347 84.36 24.31 2 2 2 2 310 40.08 44.96 4 4 4 357 81.62 88.91 91 4 1 7 RD 38 Sr 39 √ 4 1 5 CS 56 Ba 57-71 7 7 1 <td>4</td> <td>IVB</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2 Ti</td> <td>2 06.</td> <td>anium</td> <td>0 Zr 4</td> <td>.22</td> <td>conium</td> <td>2 Hf 7</td> <td>78.49</td> <td>04 Ung 1</td> <td>56.11) (;</td> <td>nilquadium u</td> <td>7 La ⁵</td> <td>8.91</td> <td>nthanum o</td> <td></td>	4	IVB										2 Ti	2 06.	anium	0 Zr 4	.22	conium	2 Hf 7	78.49	04 Ung 1	56.11) (;	nilquadium u	7 La ⁵	8.91	nthanum o	
1 2 IA IA A IA A IA A IA A IA A Adrogen Adrogen Beryllium Adrogen Beryllium Alt Beryllium Alt 12 Adrogen Beryllium Alt 239 243 24.31 Beryllium IA008 Adrogen A4.93 Adrogen Beryllium Jolium Magnesium Jodium Magnesium Jodium Magnesium Jodium Magnesium Jodium A0.08 Jodium A0.08 Jodium A0.08 Jodium A0.08 Jodium Magnesium Jodium A0.08 Jodium A0.08 Jodium A12 Jodium A13 Jodium A13 Jod	3	IIB										Sc 2	6 47	ndium tit:	<u>ү</u>	1 91	m zir	71 7.	17	-103 1((26	IUN	57	13	lar	0
1 1 2 IA IA IA A IA IA A Col Col Col Cl Li 4 Col Cl Li 4 Adrogen Berylliun berylliun hium berylliun berylliun 2:39 24.31 20 3:10 H 20 3:10 H 20 Adrostum calcium atrontur 5 CS 56 3:2:41 bartum bartum 7 R8 R 7 B8 R 7 B8 R ancium tadium tadium						ě		ŗ	<u>b</u>		ium	à 21	44.9	scan	Sr 39	88.9	n yttriu	3a 57-		a 89-						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	۹I				4 0	9.01	beryllium	12 M	24.31	magnesi	20 C	40.08	calcium	38	87.62	strontiun	56 B	137.33 barium	88 R	(226.03)	radium				
	1	A	T	.0	iydrogen	~	.94	ithium	11 Na	2.99	odium	19 X	9.10	otassium	37 Rb	15.47	ubidium	55 CS	1 32.91 esium	37 Fr	223.02)	rancium				

Periodic Table of the Elements

Tear-out Page

Tear-out Page

No marks will be given for work done on this page.

No marks will be given for work done on this page.

Physics 30 June 2000 Diploma Examination Multiple Choice and Numerical Response Keys

1.	С	20	. B
2.	В	21	. D
3.	В	22	. A
4.	С	23	. A
5.	D	24	. D
6.	D	25	. В
7.	С	26	. A
8.	С	27	. C
9.	А	28	. A
10.	D	29	. A
11.	В	30	. C
12.	А	31	. D
13.	D	32	. D
14.	С	33	. D
15.	С	34	. B
16.	В	35	. A
17.	С	36	. D
18.	С	37	. A
19.	D		

1.	3.55
2.	5.56
3.	1.54
4.	7.52
5.	5.62 or 5.63
6.	8.6
7.	1.22
8.	2252
9.	1493
10.	1221
11	3124
12	7.24 or 7.25

NR1 is linked to MC4: MC4 A —2.94, B—1.47, C—3.55, D—1.78 NR5 is linked to MC11: A—2.83 or 5.64, B—5.62 or 7.95, C—1.13, D—2.25 or 1.59 MC28 is linked to MC27: 27A—C, B—B, C—A, D—D

Physics 30 June 2000 Diploma Examination Multiple Choice and Numerical Response Keys

Question	Key	Skill	STS	GLE
1	Ċ			2
2	В			2
3	В			2
4	С		*	2
NR1	3.55		*	2
NR2	5.56		*	2
NR3	1.54		*	2
5	D	*		2
6	D		*	2
NR4	7.52	*	*	2
7	С		*	2
8	С	*	*	2
9	A		*	2
10	D			$\overline{2}$
11	B		*	3
NR5	5.62 or 5.63		*	3
12	A		*	2
13	D		*	-
14	Ċ	*		2
15	Č	*	*	3
NR6	8.6		*	4
16	B	*		2
17	Č		*	3
NR7	1.22	*		2
NR8	2252			2
18	C	*		2
19	D			3
NR9	1493		*	3
20	B	*		3
20	D		*	3
NR10	1221		*	4
22	A	*		1
23	A			2
24	D			1
25	B	*		3
26	A			4
27	C		*	2
28	Ă		*	$\frac{2}{2}$
NR11	3124		*	$\frac{2}{4}$
29	A			4
NR12	7.24 or 7.25		*	4
30	C			2
	-			_

31	D			4
32	D			4
33	D			4
34	В	*		4
35	А		*	3
36	D		*	4
37	А		*	4

WR1	Skill 5%	GLE1 5%	GLE2 10%
WR2	Skill 7%	STS 15%	GLE4 15%

Sample Solution for Written Response Question Two

• Decay

Based on the lines drawn above at 0.5 and down to 75 days, the half-life of the luminosity is 75 days. The closest half-life in the table is the decay of cobalt-56 into iron-56 with a half-life of 77.3 days.

•
$$N_{\rm o} = 1.49 \times 10^{29} \,\rm kg$$

 $N = 1.86 \times 10^{28} \,\rm kg$
 $t_{1/2} = 6.1 \,\rm days$

 $1.49 \times 10^{29} \div 2 \div 2 \div 2 = 1.86 \times 10^{28} \text{ kg}$

Therefor 3 half-lives have expired.

Total time = 3×6.1 d = 18 days

- ${}^{60}_{26}\text{Fe} \rightarrow {}^{60}_{27}\text{Co} + {}^{0}_{-1}\text{e}$ A beta particle is emitted.
- Photons with the shortest wavelength have the highest energy. So, the decay chain, 26 Al $\xrightarrow{7.1 \times 10^5 y} {}^{26}$ Mg gives the shortest wavelengths.

$$E = 1.809 \text{ MeV} = 2.894 \times 10^{-13} \text{ J}$$
$$\lambda = \frac{hc}{E} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{2.894 \times 10^{-13} \text{ J}}$$
$$\lambda = 6.87 \times 10^{-13} \text{ m}$$