Physics 30 Physics 30

Physics 30

Physics 30 Physics 30

Physics 30
Physics 30

Physics 30

Physics $30 \quad$ Physics 30
Physics 30

January 2002

Physics 30 Physics 30

Physics 30

Physics 30

Physics 30 Physics 30
Physics 30

Grade 12 Diploma Examination

Physics 30

Physics 30

Physics 30
Physics 30
Physics 30

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physi

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics $30 \quad$ Physics 30

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics $30 \quad$ Physics 30 Physi

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics $30 \quad$ Physics 30

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physi

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics $30 \quad$ Physics $30 \quad$ Physics 30

Copyright 2002, the Crown in Right of Alberta, as represented by the Minister of Learning, Alberta Learning, Learner Assesment Branch, 11160 Jasper Avenue, Edmonton, Alberta T5K 0L2. All rights reserved. Additional copies may be purchased from the Learning Resources Centre.

Special permission is granted to Alberta educators only to reproduce, for educational purposes and on a non-profit basis, parts of this examination that do not contain excerpted material only after the administration of this examination.

Excerpted material in this examination shall not be reproduced without the written permission of the original publisher (see credits page, where applicable).

January 2002

Physics 30

Grade 12 Diploma Examination

Description

Time: This examination was developed to be completed in 2.5 h ; however, you may take an additional 0.5 h to complete the examination.

This is a closed-book examination consisting of

- 37 multiple-choice and 12 numericalresponse questions, of equal value, worth 70% of the examination
- 2 written-response questions, of equal value, worth a total of 30% of the examination

This examination contains sets of related questions. A set of questions may contain multiple-choice and/or numerical-response questions.

Tear-out data sheets are included near the back of this booklet. A Periodic Table of the Elements is also provided.

Note: The perforated pages at the back of this booklet may be torn out and used for your rough work. No marks will be given for work done on the tear-out pages.

Instructions

- You are expected to provide your own calculator. You may use any scientific calculator or a graphing calculator approved by Alberta Learning.
- You are expected to have cleared your calculator of all information that is stored in the programmable or parametric memory.
- Use only an HB pencil for the machinescored answer sheet.
- Fill in the information required on the answer sheet and the examination booklet as directed by the presiding examiner.
- Read each question carefully.
- Consider all numbers used in the examination to be the result of a measurement or observation.
- When performing calculations, use the values of constants provided on the tearout sheets.
- If you wish to change an answer, erase all traces of your first answer.
- Do not fold the answer sheet.
- The presiding examiner will collect your answer sheet and examination booklet and send them to Alberta Learning.
- Now turn this page and read the detailed instructions for answering machinescored and written-response questions.

Multiple Choice

- Decide which of the choices best completes the statement or answers the question.
- Locate that question number on the separate answer sheet provided and fill in the circle that corresponds to your choice.

Example

This examination is for the subject of
A. science
B. physics
C. biology
D. chemistry

Answer Sheet
(A) (C) (D)

Numerical Response

- Record your answer on the answer sheet provided by writing it in the boxes and then filling in the corresponding circles.
- If an answer is a value between 0 and 1 (e.g., 0.25), then be sure to record the 0 before the decimal place.
- Enter the first digit of your answer in the left-hand box. Any boxes on the right that are not needed are to remain blank.

Examples

Calculation Question and Solution

If a 121 N force is applied to a 77.7 kg mass at rest on a frictionless surface, the acceleration of the mass will be
\qquad $\mathrm{m} / \mathrm{s}^{2}$.
(Record your three-digit answer in the numerical-response section on the answer sheet.)

$$
\begin{aligned}
& a=\frac{F}{m} \\
& a=\frac{121 \mathrm{~N}}{77.7 \mathrm{~kg}}=1.557 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Calculation Question and Solution

A microwave of wavelength 16 cm has a frequency, expressed in scientific notation, of $\boldsymbol{b} \times 10^{w} \mathrm{~Hz}$. The value of \boldsymbol{b} is \qquad .
(Record your two-digit answer in the numerical-response section on the answer sheet.)

$$
\begin{aligned}
& f=\frac{c}{\lambda} \\
& f=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{0.16 \mathrm{~m}}=1.875 \times 10^{9} \mathrm{~Hz}
\end{aligned}
$$

Written Response

- Write your responses in the examination booklet as neatly as possible.
- For full marks, your responses must address all aspects of the question.
- Descriptions and/or explanations of concepts must include pertinent ideas, diagrams, calculations, and formulas.
- Your responses must be presented in a well-organized manner using complete sentences, correct units and correct significant digits, where appropriate.
- Relevant scientific, technological, and/or societal concepts and examples must be identified and made explicit.

Scientific Notation Question and Solution

The charge on an electron is $-\boldsymbol{a} \cdot \boldsymbol{b} \times 10^{-c d} \mathrm{C}$. The values of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d} are \qquad ,
\qquad , and \qquad -
(Record all four digits of your answer in the numerical-response section on the answer sheet.)
Answer: $q=-1.6 \times 10^{-19} \mathrm{C}$

Use the following information to answer the first question.

The gravitational potential energy, kinetic energy, and mechanical energy of a bungee jumper during the free-fall portion of a jump are graphed below.

1. Lines A, B, and C represent, respectively,
A. mechanical energy, gravitational potential energy, and kinetic energy
B. mechanical energy, kinetic energy, and gravitational potential energy
C. gravitational potential energy, mechanical energy, and kinetic energy
D. kinetic energy, gravitational potential energy, and mechanical energy
2. A truck with a mass of $4.00 \times 10^{4} \mathrm{~kg}$ is travelling at $100.0 \mathrm{~km} / \mathrm{h}$. If the driver reduces the truck's speed to $60.0 \mathrm{~km} / \mathrm{h}$, then the truck's kinetic energy has changed by
A. $-2.22 \times 10^{4} \mathrm{~J}$
B. $-9.88 \times 10^{6} \mathrm{~J}$
C. $-3.20 \times 10^{7} \mathrm{~J}$
D. $-1.28 \times 10^{8} \mathrm{~J}$

Numerical Response

1. A pump delivers $56.0 \mathrm{~L} / \mathrm{min}$ of water from a well that is 20.0 m deep. A 1.00 L volume of water has a mass of 1.00 kg . The work done by the pump in 1.00 s is \qquad J.
(Record your three-digit answer in the numerical-response section on the answer sheet.)

Use the following information to answer the next question.

After performing a trick above the rim of a skateboard ramp, a 56 kg skateboarder lands on the ramp 3.5 m above ground level with a downward velocity of $4.0 \mathrm{~m} / \mathrm{s}$.

Friction in the wheels of the skateboard and air resistance cause a loss of $9.0 \times 10^{2} \mathrm{~J}$ of mechanical energy.
3. The skateboarder's speed at the bottom of the ramp will be
A. $\quad 6.0 \mathrm{~m} / \mathrm{s}$
B. $\quad 7.2 \mathrm{~m} / \mathrm{s}$
C. $9.2 \mathrm{~m} / \mathrm{s}$
D. $11 \mathrm{~m} / \mathrm{s}$
4. A spring is compressed a distance of x. When the spring is released, it shoots a marble of mass m vertically upward from ground level. The maximum height reached by the marble is h. The magnitude of the marble's momentum at the highest point of the marble's trajectory is equivalent to
A. 0
B. $m g h$
C. $m \sqrt{2 g h}$
D. $x \sqrt{2 g h}$

Use the following information to answer the next two questions.

During an archery competition, an arrow of mass 35.0 g is fired horizontally with a speed of $1.10 \times 10^{2} \mathrm{~m} / \mathrm{s}$ at a target fixed to a wall. The arrow does not drop significantly during its flight. The arrow penetrates the target to a depth of 5.00 cm and is brought to a complete stop.
5. The kinetic energy of the arrow as it leaves the bow is
A. $4.24 \times 10^{5} \mathrm{~J}$
B. $\quad 2.12 \times 10^{5} \mathrm{~J}$
C. $4.24 \times 10^{2} \mathrm{~J}$
D. $2.12 \times 10^{2} \mathrm{~J}$

Numerical Response

2. The magnitude of the average force exerted by the target on the arrow, expressed in scientific notation, is $\boldsymbol{a} . \boldsymbol{b} \boldsymbol{c} \times 10^{\boldsymbol{d}} \mathrm{N}$. The values of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d} are \qquad , \qquad , \qquad , and \qquad _.
(Record all four digits of your answer in the numerical-response section on the answer sheet.)
3. A 75.0 kg hockey player moving at $+10.0 \mathrm{~m} / \mathrm{s}$ crashes into a second, stationary hockey player. After the collision, the two skaters move as a unit at $+4.50 \mathrm{~m} / \mathrm{s}$. In the collision, the impulse received by the second hockey player was
A. $\quad+1.09 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
B. $+7.50 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
C. $\quad+4.13 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
D. $+3.38 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

Use the following information to answer the next question.

A student performs an experiment to investigate the time required to stop a toy van. In each of four trials, the student varies the speed and mass of the van. The toy van is brought to rest by a piston that applies a uniform force that is the same for each trial.

Numerical Response

3. When the trials above are listed in order from the trial that has the longest stopping time to the trial that has the shortest stopping time, the order is
\qquad , \qquad , \qquad , and \qquad .
longest shortest
(Record all four digits of your answer in the numerical-response section on the answer sheet.)

Use the following information to answer the next question.
A particular rocket consists of stage $1\left(m=4.5000 \times 10^{4} \mathrm{~kg}\right)$ and stage $2\left(m=1.20000 \times 10^{5} \mathrm{~kg}\right)$. Initially, the stages move together at $2.5000 \times 10^{4} \mathrm{~km} / \mathrm{h}$.

Later, a small explosion causes the stages to separate.

After separation, stage 1 moves $3.0000 \times 10^{1} \mathrm{~km} / \mathrm{h}$ slower than it did before separation.
7. The speed, v_{2}, of stage 2 immediately after separation is
A. $24920 \mathrm{~km} / \mathrm{h}$
B. $24989 \mathrm{~km} / \mathrm{h}$
C. $25011 \mathrm{~km} / \mathrm{h}$
D. $25080 \mathrm{~km} / \mathrm{h}$

Use the following information to answer the next question.

Two identical metal pucks were made to collide on a frictionless surface. Before the collision, puck 1 was moving at $6.00 \mathrm{~m} / \mathrm{s}$ and puck 2 was stationary. After the collision, the pucks moved as shown in the diagram below.

8. The magnitude of the momentum of puck 2 after the collision was
A. $\quad 1.33 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
B. $\quad 0.970 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
C. $\quad 0.705 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
D. $\quad 0.570 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
9. A conducting sphere X that has an initial charge of $+2.0 \times 10^{-8} \mathrm{C}$ and an identical conducting sphere Y that has an initial charge of $-3.0 \times 10^{-8} \mathrm{C}$ are touched together. After they are separated, the charge on sphere X is
A. $-5.0 \times 10^{-9} \mathrm{C}$
B. $-1.0 \times 10^{-8} \mathrm{C}$
C. $-2.5 \times 10^{-8} \mathrm{C}$
D. $-5.0 \times 10^{-8} \mathrm{C}$
10. The magnitude of the electrical force on an alpha particle that is $4.0 \times 10^{-10} \mathrm{~m}$ from an electron is
A. $\quad 5.8 \times 10^{-19} \mathrm{~N}$
B. $\quad 1.2 \times 10^{-18} \mathrm{~N}$
C. $\quad 1.5 \times 10^{-9} \mathrm{~N}$
D. $2.9 \times 10^{-9} \mathrm{~N}$

Use the following information to answer the next question.

Two point charges of equal magnitude, $+Q$ and $-Q$, are each placed at an equal distance, x, from point \boldsymbol{P}, as shown below.

11. The direction of the resultant electric field at point P is
A.

B.

C.

D.

12. A unit combination that is equivalent to the joule is
A. W.s
B. N / m
C. $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
D. $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$

Use the following information to answer the next question.

A positively charged rod is placed near, but not touching, a neutral metal ball.

13. As a result of the rod's position, side X of the ball becomes relatively
A. negative and the ball is repelled from the rod
B. positive and the ball is repelled from the rod
C. negative and the ball is attracted to the rod
D. positive and the ball is attracted to the rod
14. Which of the following statements describes a relationship between the forces described by Coulomb's Law and the forces described by Newton's Law of Universal Gravitation?
A. In atoms, gravitational forces are weaker than electrical forces.
B. Gravitational forces and electrical forces are attractive forces only.
C. Gravitational forces act at any distance; whereas, electrical forces act at very short distances only.
D. As the distance between objects increases, electrical forces increase, whereas gravitational forces decrease.

Use the following diagram to answer the next question.

15. In an apparatus such as the one shown above, the direction of the magnetic field at point \boldsymbol{P} due to the electron flow would be
A. into the page
B. out of the page
C. toward the left side of the page
D. toward the right side of the page

Use the following information to answer the next question.

A long, straight wire carries a current of 2.00 A . The magnetic field strength around the current-carrying wire can be calculated using the equation

$$
B=\frac{k^{\prime} I}{r}
$$

where $k^{\prime}=2.00 \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$
$B=$ magnetic field strength (T)
$I=$ current in the wire (A)
$r=$ distance from the centre of the wire (m)

Numerical Response

4. The magnetic field strength 15.0 cm from the centre of the wire, expressed in scientific notation, is $\boldsymbol{a} . \boldsymbol{b} \boldsymbol{c} \times 10^{-\boldsymbol{d}} \mathrm{T}$. The values of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d} are \qquad , \qquad , \qquad , and \qquad .
(Record all four digits of your answer in the numerical-response section on the answer sheet.)

Use the following information to answer the next six questions.

A mass spectrometer uses either a magnetic field or an electric field to deflect charged particles.

Magnetic Field Mass Spectrometer

Electric Field Mass Spectrometer

16. In the magnetic field mass spectrometer shown above, the direction of the magnetic field is
A. into the page
B. out of the page
C. toward the left side of the page
D. toward the right side of the page
17. The energy gained by a proton as it moves from plate \boldsymbol{P} to plate \boldsymbol{Q} is
A. $\quad 1.00 \times 10^{4} \mathrm{eV}$
B. $\quad 1.00 \times 10^{4} \mathrm{~J}$
C. $1.00 \times 10^{4} \mathrm{~V}$
D. $\quad 1.00 \times 10^{4} \mathrm{~N}$
18. A proton starts from rest at plate \boldsymbol{P}. The speed of the proton as it passes through the hole in plate \boldsymbol{Q} is
A. $\quad 6.92 \times 10^{5} \mathrm{~m} / \mathrm{s}$
B. $\quad 1.38 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $2.96 \times 10^{7} \mathrm{~m} / \mathrm{s}$
D. $5.93 \times 10^{7} \mathrm{~m} / \mathrm{s}$

Use your recorded answer from Multiple Choice 18 to answer Numerical Response 5.*

Numerical Response

5. In the magnetic field mass spectrometer shown, the radius of curvature of a proton's path is 3.00 m . The magnetic field intensity, expressed in scientific notation, is $\boldsymbol{a} . \boldsymbol{b} \boldsymbol{c} \times 10^{-\boldsymbol{d}} \mathrm{T}$. The values of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d}, are \qquad , \qquad
\qquad , and \qquad _.
(Record all four digits of your answer in the numerical-response section on the answer sheet.)
*You can receive marks for this question even if the previous question was answered incorrectly.

Numerical Response

6. In the electric field mass spectrometer shown, the radius of curvature of a proton's path is 10.0 m . The proton experiences an electrostatic force, expressed in scientific notation, of $\boldsymbol{b} \times 10^{-w} \mathrm{~N}$. The value of \boldsymbol{b} is \qquad .
(Record your three-digit answer in the numerical-response section on the answer sheet.)
*You can receive marks for this question even if multiple-choice question 18
was answered incorrectly.

Use the following additional information to answer the next question.

A different electric field mass spectrometer is set up so that an electron would follow the same curved path that the proton travelled. In this mass spectrometer, plate \boldsymbol{P} is \qquad , plate \boldsymbol{Q} is \qquad , and the electric field direction between the curved parallel plates is \qquad iii .
19. The row that correctly completes the statement above is row

Row	\boldsymbol{i}	$\boldsymbol{i i}$	iii
A.	positive	negative	unchanged
B.	positive	negative	reversed
C.	negative	positive	unchanged
D.	negative	positive	reversed

20. Charged particles moving toward Earth are trapped within a field near Earth, where they cause the aurora borealis (northern lights) and aurora australis (southern lights). The field in which the particles are trapped is
A. a gravitational field
B. an induction field
C. a magnetic field
D. an electric field
21. Magnetic levitation (maglev) trains "float" above the rails. A permanent magnet mounted on the train interacts with an electromagnet in the rail. If it is assumed that the permanent magnet in each of the diagrams below is identical and that the current is the same in each electromagnet, then which of the following designs would produce the greatest lift?
A.

B.

C.

D.

Use the following information to answer the next two questions.

A planetary space probe can measure the magnetic field intensity near the surface of a planet by trailing a long wire perpendicular to the planet's magnetic field lines.

A space probe orbiting Jupiter travels at a speed of $2.94 \mathrm{~km} / \mathrm{s}$ relative to the planet's magnetic field and trails a wire 30.0 m long that passes across the planet's magnetic field. The magnetic field intensity around Jupiter varies from about 0.300 mT at the equator to about 1.40 mT at the poles.
22. The potential difference, in millivolts, induced in the space probe's wire when the space probe orbits over Jupiter's equator is
A. $\quad 2.65 \times 10^{1} \mathrm{mV}$
B. $\quad 1.23 \times 10^{2} \mathrm{mV}$
C. $\quad 2.65 \times 10^{4} \mathrm{mV}$
D. $1.23 \times 10^{5} \mathrm{mV}$

Use your recorded answer from Multiple Choice 22 to answer Numerical Response 7.*

Numerical Response

7. The electric circuit connected to the space probe's wire has a high resistance. When the current in the circuit is $1.42 \times 10^{-4} \mathrm{~A}$, the resistance of the circuit, expressed in scientific notation, is $\boldsymbol{b} \times 10^{w} \Omega$. The value of \boldsymbol{b} is \qquad .
(Record your three-digit answer in the numerical-response section on the answer sheet.)
*You can receive marks for this question even if the previous question was answered incorrectly.

Use the following information to answer the next two questions.

An AC welding device contains a transformer that operates on an input 220 V AC circuit operating at 30.0 A . The output current is 180 A . The output voltage fluctuates during the welding process. The input and output voltages are measured by AC voltmeters on the welding device.
23. In this welding device, the ratio of primary turns to secondary turns in the transformer is approximately
A. $6: 1$
B. $1: 6$
C. $7.3: 1$
D. $1: 7.3$

Numerical Response

8. The reading on the voltmeter that measures the output voltage will be
\qquad V.
(Record your three-digit answer in the numerical-response section on the answer sheet.)
9. Electromagnetic radiation is always produced as a result of the
A. acceleration of electric charges
B. movement of electric charges
C. acceleration of masses
D. magnetic fields

Use the following information to answer the next question.

Chlorophyll in plants absorbs photons of electromagnetic radiation and converts them into chemical potential energy. Chlorophyll a is one of the main types of chlorophyll. The graph below shows the relationship between the absorption of photons by chlorophyll a and the wavelength of the photons striking the plants.

Absorption Rate as a Function of Incident Wavelength

25. To produce the maximum rate of photon absorption by chlorophyll a, photons should have an energy of
A. $\quad 1.77 \mathrm{eV}$
B. $\quad 1.88 \mathrm{eV}$
C. 2.48 eV
D. $\quad 3.40 \mathrm{eV}$
26. Compared with the wavelength and frequency of visible light, the electromagnetic waves emitted during nuclear fission have
A. longer wavelengths but a lower frequency
B. longer wavelengths and a higher frequency
C. shorter wavelengths and a lower frequency
D. shorter wavelengths but a higher frequency
27. An electromagnetic wave travels vertically upward, perpendicular to Earth's surface. If the magnetic field component of the wave oscillates in a north-south direction, then the electric field component will oscillate in
A. an east-west direction
B. a north-south direction
C. a vertically upward direction
D. a vertically downward direction
28. Which of the following properties is a property of X-rays but not of radio waves?
A. Reflection
B. Refraction
C. Interference
D. Gas ionization
29. If the charge-to-mass ratio of an ion with a $3+$ charge is $1.4 \times 10^{7} \mathrm{C} / \mathrm{kg}$, then the mass of the ion is
A. $\quad 1.1 \times 10^{-26} \mathrm{~kg}$
B. $\quad 3.4 \times 10^{-26} \mathrm{~kg}$
C. $\quad 1.0 \times 10^{-25} \mathrm{~kg}$
D. $6.7 \times 10^{-12} \mathrm{~kg}$

Use the following information to answer the next three questions.

X-rays were discovered in 1895 by Roentgen. In the cathode ray tube that he used, a high electrical potential difference between the anode and the cathode accelerated the electrons. The electrons then collided with a copper target.

Three Types of Energy

1 electrical potential energy
2 electromagnetic energy
3 kinetic energy

Numerical Response

9. In the production of X-rays, the three types of energy listed above occur in order from \qquad to \qquad to \qquad _.
(Record all three digits of your answer in the numerical-response section on the answer sheet.)

Numerical Response

10. The minimum accelerating voltage necessary to produce an X-ray with a wavelength of $6.25 \times 10^{-11} \mathrm{~m}$, expressed in scientific notation, is $\boldsymbol{a} . \boldsymbol{b c} \times 10^{d} \mathrm{~V}$. The values of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d} are \qquad , \qquad , \qquad , and \qquad .
(Record all four digits of your answer in the numerical-response section on the answer sheet.)
11. The damage to biological organisms that X -rays can cause is a result of their
A. high speed
B. small mass
C. short wavelength
D. high radioactivity

Use the following information to answer the next three questions.

In 1997, the Mars Pathfinder Mission included a robotic rover called Sojourner. Sojourner carried a variety of instruments to analyze the Martian soil, rocks, and air.

One of Sojourner's instruments bombarded rocks with alpha particles to produce an "alpha-proton" reaction. One example of an alpha-proton reaction occurs when an alpha particle enters a sodium atom and knocks a proton out of its nucleus. The nuclear reaction equation can be written as follows.

$$
{ }_{2}^{4} \mathrm{He}+{ }_{11}^{23} \mathrm{Na} \rightarrow{ }_{1}^{1} \mathrm{p}+\boldsymbol{c} \boldsymbol{a b} \boldsymbol{X}
$$

Scientists on Earth sent instructions to Sojourner via radio waves. Because it took 10 min for the signals to reach the robot, the scientists instructed it to move only a few centimeters at a time.

Numerical Response

11. In the nuclear reaction equation above, the values of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d} are \qquad , \qquad , \qquad , and \qquad .
(Record all four digits of your answer in the numerical-response section on the answer sheet.)
12. In the nuclear reaction equation above, element X is
A. Al
B. Mg
C. Ne
D. Fe

Numerical Response

12. When the signals were sent to Sojourner, the distance between Earth and Mars, expressed in scientific notation, was $\boldsymbol{a} . \boldsymbol{b} \times 10^{\boldsymbol{c d}} \mathrm{m}$. The values of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d} are \qquad , \qquad
\qquad , and \qquad .
(Record all four digits of your answer in the numerical-response section on the answer sheet.)
13. If the stopping potential of a photocell is 5.60 V , then the maximum kinetic energy of the photoelectrons emitted is
A. $\quad 3.50 \times 10^{19} \mathrm{~J}$
B. $\quad 5.60 \mathrm{~J}$
C. $8.96 \times 10^{-19} \mathrm{~J}$
D. $2.90 \times 10^{-20} \mathrm{~J}$
14. If a metal with a threshold frequency of $1.1 \times 10^{15} \mathrm{~Hz}$ is illuminated by light with a wavelength of $1.7 \times 10^{-7} \mathrm{~m}$, then the maximum kinetic energy of the emitted photoelectrons will be
A. $\quad 4.4 \times 10^{-19} \mathrm{~J}$
B. $7.3 \times 10^{-19} \mathrm{~J}$
C. $1.2 \times 10^{-18} \mathrm{~J}$
D. $1.5 \times 10^{-18} \mathrm{~J}$

Use the following information to answer the next question.

To demonstrate the development of Rutherford's atomic model, a teacher lined up five students at arm's length from each other. She then tossed bean bags toward them. Most of the bean bags went past the line of students without coming into contact with any of them. Occasionally, a bean bag would hit a student and the bean bag would drop to the floor.
34. In this demonstration, the bean bags and the students represent, respectively,
A. alpha particles and electrons
B. electrons and alpha particles
C. nuclei and alpha particles
D. alpha particles and nuclei
35. In hydrogen, the radius of the fourth Bohr orbital is
A. $\quad 3.31 \times 10^{-12} \mathrm{~m}$
B. $\quad 1.32 \times 10^{-11} \mathrm{~m}$
C. $2.12 \times 10^{-10} \mathrm{~m}$
D. $8.46 \times 10^{-10} \mathrm{~m}$

Use the following information to answer the next question.

Observation

The value of q / m for a cathode-ray particle is about 1800 times greater than the value of q / m for a hydrogen ion.

Conclusions That May Be Supported by the Observation

I The charge on a cathode-ray particle is 1800 times greater than the charge on a hydrogen ion.

II The charge on a cathode-ray particle is $\frac{1}{1800}$ of the charge on a hydrogen ion.

III The mass of a cathode-ray particle is 1800 times greater than the mass of a hydrogen ion.

IV The mass of a cathode-ray particle is $\frac{1}{1800}$ of the mass of a hydrogen ion.
36. The observation supports conclusions
A. I and III
B. I and IV
C. II and III
D. II and IV

Use the following information to answer the next question.

Four Bright-Line Emission Spectra

Unknown Gas Mixture Spectrum

Hydrogen Gas Spectrum

Helium Gas Spectrum

Sodium Gas Spectrum

37. According to the spectra above, the unknown gas mixture contains
A. hydrogen, helium, and sodium gases
B. hydrogen and sodium gases
C. hydrogen and helium gases
D. helium and sodium gases

Use the following information to answer the next question.

A teacher provides his students with the equipment shown below.

The teacher tells the students that one of the boxes contains two resistors that are placed in parallel and the other box contains two resistors that are placed in series. All four resistors are identical, and the boxes cannot be opened.

Students can connect any pieces of the equipment by attaching alligator clips to their respective posts. They may use some or all of this equipment, but they cannot use any additional equipment.

Written Response-15\%

1. Design an experiment that would allow the students to determine which box contains the resistors in series and which box contains the resistors in parallel. Your design should include

- clearly labelled schematic diagrams showing the placement of the individual resistors inside the boxes
- meter placement and measurements
- a description of the analysis that must be done to determine the placement of the resistors in each box

NOTE: Marks will be awarded for the physics used to solve this problem and for the effective communication of your response.

Written-response question 2 begins on the next page.

Use the following information to answer the next question.

Iodine-131 is a radioactive element used in the medical diagnosis and treatment of thyroid problems. Iodine-131 undergoes simultaneous beta and gamma decay and has a half-life of 8.00 days.

Written Response-15\%

2. - Write the complete decay equation for iodine-131.

- Complete the table below by entering the amount of iodine-131 remaining over 40 days.
- Explain how you obtained data for the table.
- Provide a graph of the theoretical decay of 2.00 g of iodine- 131 .

Time (days)	0	8	16	24	32	40
Mass (g)	2.00					

\qquad

Use the following additional information to answer the next parts of the question.

The thyroid gland uses iodine to make hormones that the human body needs. The thyroid gland is the only tissue in the human body that collects iodine. An overactive thyroid gland that causes medical problems can be treated with a high dose of iodine-131, which destroys the thyroid gland only.

- A treatment centre receives a shipment of 5.00 g of iodine- 131 . The treatment centre stores the iodine-131. What is the amount of iodine-131 remaining after 3.00 days?
- Identify at least two risks and one benefit of using radioactive isotopes in medical treatments.

Clearly communicate your understanding of the physics principles that you are using to solve this question. You may communicate this understanding mathematically, graphically, and/or with written statements.

You have now completed the examination.
If you have time, you may wish to check your answers.

Periodic Table of the Elements

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB	VIIIB	IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA or 0
$\begin{array}{ll} 1 & H \\ 1.01 \\ \text { hydrogen } \end{array}$																	$\begin{array}{\|l\|} \hline 2 \mathrm{He} \\ 4.00 \\ \text { helium } \end{array}$
6.94 lithium	4 Be 9.01 beryllium											$\begin{array}{ll} \hline 5 & \text { B } \\ 10.81 & \\ \text { boron } & \end{array}$	$\begin{array}{ll} \hline 6 & C \\ 12.01 \\ \text { carbon } \end{array}$	$\begin{array}{\|lr\|} \hline 7 & \mathrm{~N} \\ \hline 14.01 & \\ \text { nitrogen } \end{array}$	$\begin{aligned} & 8 \\ & 16.00 \\ & \text { oxygen } \end{aligned}$	$\begin{array}{\|ll\|} \hline 9 & F \\ \hline 19.00 & \\ \text { fluorine } & \\ \hline \end{array}$	$\begin{aligned} & 10 \mathrm{Ne} \\ & 20.17 \\ & \text { neon } \end{aligned}$
11 Na 22.99 sodium	12 Mg 24.31 magnesium											$\begin{array}{\|ll\|} \hline 13 & \mathrm{Al} \\ 26.98 & \\ \text { aluminum } \end{array}$	$\begin{array}{ll} \hline 14 & \mathrm{Si} \\ 28.09 & \\ \text { silicon } & \\ \hline \end{array}$	$\begin{aligned} & 15 \mathrm{P} \\ & 30.97 \\ & \text { phosphorus } \end{aligned}$	16 S 32.06 sulphur	17 Cl 35.45 chlorine	$\begin{array}{\|ll\|} \hline 18 & \mathrm{Ar} \\ 39.95 & \\ \text { argon } & \\ \hline \end{array}$
19 K 39.10 potassium	20 Ca 40.08 calcium	$\begin{aligned} & 21 \mathrm{SC} \\ & 44.96 \\ & \text { scandium } \end{aligned}$	$\begin{array}{ll} 22 & \mathrm{Ti} \\ 47.90 \\ \text { titanium } \end{array}$	$\begin{aligned} & \hline 23 \quad \mathrm{~V} \\ & 50.94 \\ & \text { vanadium } \end{aligned}$	$\begin{aligned} & 24 \mathrm{Cr} \\ & 52.00 \\ & \text { chromium } \end{aligned}$	25 Mn 54.94 manganese	$\begin{array}{ll} 26 \mathrm{Fe} \\ 55.85 & \\ \text { iron } & \\ \hline \end{array}$	$\begin{aligned} & 27 \mathrm{CO} \\ & 58.93 \\ & \text { cobalt } \end{aligned}$	$\begin{array}{\|ll} \hline 28 & \mathrm{Ni} \\ 58.71 & \\ \text { nickel } & \end{array}$	29 Cu 63.55 copper	$\begin{aligned} & \hline 30 \mathrm{Zn} \\ & 65.38 \\ & \text { zinc } \end{aligned}$	$\begin{aligned} & 31 \mathrm{Ga} \\ & 69.72 \\ & \text { gallium } \end{aligned}$	$\begin{aligned} & 32 \mathrm{Ge} \\ & 72.59 \\ & \text { germanium } \end{aligned}$	$\begin{aligned} & 33 \mathrm{AS} \\ & 74.92 \\ & \text { arsenic } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 34 \mathrm{Se} \\ & 78.96 \\ & \text { selenium } \end{aligned}$	$\begin{array}{\|ll} \hline 35 \mathrm{Br} \\ 79.90 \\ \text { bromine } \end{array}$	$\begin{aligned} & 36 \mathrm{Kr} \\ & 83.80 \\ & \text { krypton } \end{aligned}$
37 Rb 85.47 rubidium	38 Sr 87.62 strontium	$\begin{array}{\|ll} \hline 39 & \mathrm{Y} \\ 88.91 & \\ \hline \text { yttrium } & \\ \hline \end{array}$	$\begin{aligned} & 40 \mathrm{Zr} \\ & 91.22 \\ & \text { zirconium } \end{aligned}$	41 Nb 92.91 niobium	$\begin{array}{\|l\|} \hline 42 \mathrm{MO} \\ 95.94 \\ \text { molybdenum } \end{array}$	43 TC (98.91) technetium	44 Ru 101.07 ruthenium	$\begin{aligned} & 45 \mathrm{Rh} \\ & 102.91 \\ & \text { rhodium } \end{aligned}$	$\begin{aligned} & 46 \mathrm{Pd} \\ & 106.40 \\ & \text { palladium } \end{aligned}$	$\begin{aligned} & 47 \mathrm{Ag} \\ & 107.87 \\ & \text { silver } \end{aligned}$	48 Cd 112.41 cadmium	$\begin{array}{\|l\|} \hline 49 \text { In } \\ \begin{array}{l} 114.82 \\ \text { indium } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 50 \mathrm{Sn} \\ 118.69 \\ \text { tin } \end{array}$	51 Sb 121.75 antimony	52 Te 127.60 tellurium	$\begin{array}{\|ll} \hline 53 & \text { I } \\ & 126.90 \\ \text { iodine } & \end{array}$	$\begin{aligned} & 54 \text { Xe } \\ & 131.30 \\ & \text { xenon } \end{aligned}$
$55 \mathrm{Cs}$ 132.91 cesium	$\begin{aligned} & 56 \mathrm{Ba} \\ & \\ & \hline 137.33 \\ & \text { barium } \end{aligned}$	57-71	$\begin{array}{\|l\|} \hline 72 \mathrm{Hf} \\ \begin{array}{l} 178.49 \\ \text { hafnium } \end{array} \\ \hline \end{array}$	$\begin{aligned} & 73 \mathrm{Ta} \\ & 180.95 \\ & \text { tantalum } \end{aligned}$	$\begin{array}{\|l\|} \hline 74 \mathrm{~W} \\ 183.85 \\ \text { tungsten } \\ \hline \end{array}$	75 Re 186.21 rhenium	$\begin{aligned} & 76 \bigcirc S \\ & 190.20 \\ & \text { osmium } \end{aligned}$	77 Ir 192.22 iridium	$\begin{array}{\|lr\|} \hline 78 & \mathrm{Pt} \\ \begin{array}{l} 195.09 \\ \text { platinum } \end{array} \\ \hline \end{array}$	$\begin{aligned} & 79 \mathrm{AU} \\ & 196.97 \\ & \text { gold } \end{aligned}$	$\begin{array}{\|l} \hline 80 \mathrm{Hg} \\ 200.59 \\ \text { mercury } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 81 \mathrm{Tl} \\ 204.37 \\ \text { thallium } \end{array}$	$\begin{array}{\|l} \hline 82 \mathrm{~Pb} \\ 207.19 \\ \text { lead } \\ \hline \end{array}$	$\begin{aligned} & \hline 83 \quad \mathrm{Bi} \\ & 208.98 \\ & \text { bismuth } \end{aligned}$	$\begin{array}{\|ll} \hline 84 & \mathrm{PO} \\ (208.98) \\ \text { polonium } \end{array}$	$\begin{aligned} & 85 \mathrm{At} \\ & \text { (209.98) } \\ & \text { astatine } \\ & \hline \end{aligned}$	86 Rn (222.02) radon
87 Fr (223.02) francium	88 Ra (226.03) radium	89-103	104 Unq (266.11) unnilquadium	105 Unp (262.11) unnilpentium	106 Unh (263.12) unnilhexium	107 Uns (262.12) unnilseptium	108 Uno (265) unniloctium	109 Une (266) unnilennium									
			$\begin{aligned} & 57 \text { La } \\ & 138.91 \\ & \text { lanthanum } \end{aligned}$	58 Ce 140.12 cerium	$\begin{array}{ll} \hline 59 \quad \mathrm{Pr} \\ \text { 140.91 } \\ \text { praseodymium } \end{array}$	60 Nd 144.24 neodymium	61 Pm (144.91) promethium	62 Sm 150.35 samarium	$\begin{array}{\|l} \hline 63 \mathrm{EU} \\ 151.96 \\ \text { europium } \end{array}$	64 Gd 157.25 gadolinium	65 Tb 158.93 terbium	$\begin{array}{\|l\|} \hline 66 \quad \text { Dy } \\ 162.50 \\ \text { dysprosium } \end{array}$	$\begin{array}{\|l\|} \hline 67 \mathrm{HO} \\ 164.93 \\ \text { holmium } \\ \hline \end{array}$	$\begin{aligned} & 68 \text { Er } \\ & 167.26 \\ & \text { erbium } \end{aligned}$	$\begin{aligned} & \hline 69 \mathrm{Tm} \\ & 168.93 \\ & \text { thulium } \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \mathrm{Yb} \\ & \begin{array}{c} 173.04 \\ \text { ytterbium } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 71 \quad \text { LU } \\ & 174.97 \\ & \text { lutetium } \end{aligned}$
			89 AC (277.03) actinium	90 Th (232.04) thorium	$\begin{array}{\|ll} \hline 91 & \mathrm{~Pa} \\ (231.04) \\ \text { protactinium } \end{array}$	$\begin{array}{\|ll\|} \hline 92 & U \\ 238.03 & \\ \text { uranium } \end{array}$	$\begin{aligned} & 93 \mathrm{~Np} \\ & (237.05) \\ & \text { neptunium } \end{aligned}$	$\begin{aligned} & 94 \mathrm{PU} \\ & \text { (244.06) } \\ & \text { plutonium } \end{aligned}$	$\begin{aligned} & 95 \mathrm{Am} \\ & (243.06) \\ & \text { americium } \end{aligned}$	$\begin{array}{\|l\|} \hline 96 \mathrm{Cm} \\ \left(\begin{array}{l} \text { (247.07) } \\ \text { curium } \end{array}\right. \\ \hline \end{array}$	97 BK (247.07) berkelium	$\begin{array}{\|l} \hline 98 \quad \mathrm{Cf} \\ \begin{array}{l} \text { (242.06) } \\ \text { californium } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 99 \quad \mathrm{ES} \\ \text { (252.08) } \\ \text { einsteinium } \end{array}$	100Fm (257.10) fermium	101 Md (258.10) mendelevium	$\begin{aligned} & 102 \mathrm{NO} \\ & (259.10) \\ & \text { nobelium } \end{aligned}$	$\begin{aligned} & 103 \mathrm{Lr} \\ & \text { (260.11) } \\ & \text { lawrencium } \end{aligned}$

PHYSICS DATA SHEET

CONSTANTS

Gravity, Electricity, and Magnetism

Acceleration Due to Gravity or	
Gravitational Field Near Earth...........	a_{g} or $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ or $9.81 \mathrm{~N} / \mathrm{kg}$
Gravitational Constant	$G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Mass of Earth...................................	$M_{\mathrm{e}}=5.98 \times 10^{24} \mathrm{~kg}$
Radius of Earth	$R_{\mathrm{e}}=6.37 \times 10^{6} \mathrm{~m}$
Coulomb's Law Constant....................	$k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Electron Volt..................................	$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
Elementary Charge............................	$e=1.60 \times 10^{-19} \mathrm{C}$
Index of Refraction of Air...................	$n=1.00$
Speed of Light in Vacuum	$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Atomic Physics

Energy of an Electron in the 1st	
Bohr Orbit of Hydrogen	$E_{1}=-2.18 \times 10^{-18} \mathrm{~J}$ or -13.6 eV
Planck's Constant	$h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ or $4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
Radius of 1st Bohr Orbit of Hydrogen	$r_{1}=5.29 \times 10^{-11} \mathrm{~m}$
Rydberg's Constant for Hydrogen	$R_{\mathrm{H}}=1.10 \times 10^{7} \frac{1}{\mathrm{~m}}$

Particles		
	Rest Mass	Charge
Alpha Particle	$m_{\alpha}=6.65 \times 10^{-27} \mathrm{~kg}$	α^{2+}
Electron	$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$	e^{-}
Neutron	$m_{\mathrm{n}}=1.67 \times 10^{-27} \mathrm{~kg}$	n^{0}
Proton	$m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$	p^{+}

Trigonometry and Vectors

$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
$\tan \theta=\frac{R_{y}}{R_{x}}$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$R_{x}=R \cos \theta$
$R_{y}=R \sin \theta$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Graphing Calculator Window Format

$x:\left[x_{\text {min }}, x_{\text {max }}, x_{\text {scl }}\right]$
$y:\left[y_{\text {min }}, y_{\text {max }}, y_{\mathrm{scl}}\right]$

Prefixes Used With SI Units

Prefix	Symbol	Exponential Value	Prefix	Symbol	Exponential Value
pico..	p.... 10^{-12}	tera	T 10^{12}
nano	$\mathrm{n} . .$. 10^{-9}	giga	G 10^{9}
micro	μ... 10^{-6}	mega	M 10^{6}
milli	m..... 10^{-3}	kilo	k ...	-.... 10^{3}
centi ..	c 10^{-2}	hecto	h 10^{2}
deci	d...... 10^{-1}	deka ...	da 10^{1}

EQUATIONS

Kinematics

$\vec{v}_{\text {ave }}=\frac{\vec{d}}{t} \quad \vec{d}=\vec{v}_{\mathrm{f}} t-\frac{1}{2} \vec{a} t^{2}$
$\vec{a}=\frac{\vec{v}_{\mathrm{f}}-\vec{\nu}_{\mathrm{i}}}{t}$
$\vec{d}=\left(\frac{\vec{v}_{\mathrm{f}}+\vec{v}_{\mathrm{i}}}{2}\right) t$
$\vec{d}=\vec{v}_{\mathrm{i}} t+\frac{1}{2} \vec{a} t^{2}$
$v_{f}^{2}=v_{i}^{2}+2 a d$
$v=\frac{2 \pi r}{T}$
$a_{\mathrm{c}}=\frac{v^{2}}{r}$
Dynamics

$\vec{F}=m \vec{a}$	$F_{\mathrm{g}}=\frac{G m_{1} m_{2}}{r^{2}}$
$\vec{F} \Delta t=m \Delta \vec{v}$	$g=\frac{G m_{1}}{r^{2}}$
$\vec{F}_{\mathrm{g}}=m \vec{g}$	$F_{\mathrm{c}}=\frac{m v^{2}}{r}$
$F_{\mathrm{f}}=\mu F_{\mathrm{N}}$	$F_{\mathrm{c}}=\frac{4 \pi^{2} m r}{T^{2}}$
$\vec{F}_{\mathrm{s}}=-k \vec{x}$	

Momentum and Energy

$\vec{p}=m \vec{v}$
$E_{\mathrm{k}}=\frac{1}{2} m v^{2}$
$W=F d$
$W=\Delta E=F d \cos \theta$
$E_{\mathrm{p}}=\frac{1}{2} k x^{2}$
$P=\frac{W}{t}=\frac{\Delta E}{t}$

Waves and Light

$$
\begin{array}{ll}
T=2 \pi \sqrt{\frac{m}{k}} & \frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{n_{2}}{n_{1}} \\
T=2 \pi \sqrt{\frac{l}{g}} & \lambda=\frac{x d}{n l} \\
T=\frac{1}{f} & \lambda=\frac{d \sin \theta}{}
\end{array}
$$

$$
v=f \lambda
$$

$$
\frac{\lambda_{1}}{2}=l ; \frac{\lambda_{1}}{4}=l
$$

$$
m=\frac{h_{\mathrm{i}}}{h_{0}}=\frac{-d_{\mathrm{i}}}{d_{0}}
$$

$$
\frac{1}{f}=\frac{1}{d_{0}}+\frac{1}{d_{\mathrm{i}}}
$$

Atomic Physics

$$
\begin{aligned}
& h f=E_{\mathrm{k}_{\max }}+W \\
& W=h f_{0} \\
& E_{\mathrm{k}_{\max }}=q V_{\mathrm{stop}} \\
& E=h f=\frac{h c}{\lambda}
\end{aligned}
$$

$$
\frac{1}{\lambda}=R_{\mathrm{H}}\left(\frac{1}{{n_{\mathrm{f}}}^{2}}-\frac{1}{n_{\mathrm{i}}^{2}}\right)
$$

$$
E_{n}=\frac{1}{n^{2}} E_{1}
$$

$$
r_{n}=n^{2} r_{1}
$$

$$
N=N_{0}\left(\frac{1}{2}\right)^{n}
$$

Quantum Mechanics and Nuclear Physics

$$
\begin{array}{ll}
E=m c^{2} & p=\frac{h}{\lambda} \\
p=\frac{h f}{c} ; E=p c
\end{array}
$$

Electricity and Magnetism

$F_{\mathrm{e}}=\frac{k q_{1} q_{2}}{r^{2}} \quad V=I R$
$|\vec{E}|=\frac{k q_{1}}{r^{2}} \quad P=I V$
$\vec{E}=\frac{\vec{F}_{\mathrm{e}}}{q}$
$I=\frac{q}{t}$
$|\vec{E}|=\frac{V}{d}$
$F_{\mathrm{m}}=I l B_{\perp}$
$V=\frac{\Delta E}{q}$
$F_{\mathrm{m}}=q v B_{\perp}$
$R=R_{1}+R_{2}+R_{3}$
$V=l v B_{\perp}$
$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
$\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}=\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}=\frac{I_{\mathrm{s}}}{I_{\mathrm{p}}}$
$I_{\text {eff }}=0.707 I_{\max }$
$V_{\text {eff }}=0.707 V_{\max }$

No marks will be given for work done on this page.

For Department Use Only	
Question 1 Marker 1	C1
Question 1 Marker 2	C2
Question 1 Marker 3	C3
Question 2 Marker 1	C4
Question 2 Marker 2	C5
Question 2 Marker 3	C6

PHYSICS 30

DIPLOMA EXAMINATION

JANUARY 2002

Multiple Choice and
Numerical Response
Key

Draft
Written Response
Scoring Guide

Physics 30 January 2002 Diploma Examination
Multiple-Choice and Numerical-Response Keys Multiple Choice

1.	A	20.	C
2.	B	21.	D
3.	B	22.	C
4.	A	23.	A
5.	D	24.	A
6.	C	25.	B
7.	C	26.	D
8.	C	27.	A
9.	A	28.	D
10.	D	29.	B
11.	C	30.	C
12.	A	31.	B
13.	D	32.	C
14.	A	33.	A
15.	A	34.	D
16.	B	35.	D
17.	A	36.	B
18.	B	37.	B
19.	D		

Numerical Response

1.	183	
2.	4243	8.
3.	3214	9.
4.	2676	10.
5.	4803*	11.
6.	$3.18{ }^{\dagger}$	12.

*If MC 18 is
A NR 52413

B 4823, 4803
C 1031
D 2061
${ }^{\dagger}$ If MC 18 is A NR $6 \quad 8.00$
B $\quad 3.18,3.20$

C $\quad 1.46$
D $\quad 5.87$
${ }^{\ddagger}$ If MC 22 is

A NR 7	$1.87,1.86$
B	$8.66,8.67$
C	$1.87,1.86$
D	$8.66,8.67$

Scoring Guide for Holistic Questions

Major Concepts: Experimental design; Circuit Diagrams; Parallel and Series Networks	
Score	$\begin{array}{l}\text { Criteria } \\ \mathbf{5} \\ \text { Excellent student provides a complete solution that covers the full scope of the question. } \\ - \\ \text { The reader has no difficulty following the strategy or solution presented by the } \\ \text { student. }\end{array}$
- Statements made in the response are supported explicitly but may contain minor	
errors or have minor omissions.	
In the response, the student uses major physics principles such as balanced or	
unbalanced forces and conservation laws. The student applies knowledge and	
skills from one area of physics to another.	

*The statements in italics relate the scoring guide to the standard statements developed by Alberta Learning, Learner Assessment Branch.

Use the following information to answer the next question.

A teacher provides his students with the equipment shown below.

The teacher tells the students that one of the boxes contains two resistors that are placed in parallel and the other box contains two resistors that are placed in series. All four resistors are identical, and the boxes cannot be opened.

Students can connect any pieces of the equipment by attaching alligator clips to their respective posts. They may use some or all of this equipment, but they cannot use any additional equipment.

Written Response-15\%

1. Design an experiment that would allow the students to determine which box contains the resistors in series and which box contains the resistors in parallel. Your design should include

- clearly labelled schematic diagrams showing the placement of the individual resistors inside the boxes
- meter placement and measurements
- a description of the analysis that must be done to determine the placement of the resistors in each box

NOTE: Marks will be awarded for the physics used to solve this problem and for the effective communication of your response.

Physics Content

- schematic diagrams showing series and parallel placement of resistors
- meter placement (The student must explicitly communicate that voltmeters are in parallel, ammeters are in series - but needs only to address the meters required by procedure given by the student)
- consistent measurements and analysis (The student must address both the current and the voltage. For example, if the two boxes are placed parallel to each other in a circuit it is sufficient for the student to say that the potential drop across each box is the same and then measure the current into or out of each box)
- analysis that demonstrates an understanding of parallel and series circuits (Explicit support is required)

Sample Solution

Series:

Parallel:

Method 1

Procedure:

with box 1: connect box in series with ammeter and battery, measure I_{1}
with box 2: connect box in series with ammeter and battery, measure I_{2}
Analysis: Since the potential drop across each box is the same:
$\begin{array}{lll}\text { Series: } & R_{\mathrm{T}}=R_{1}+R_{2} & I=\frac{V}{2 R} \\ & R_{\mathrm{T}}=2 R\end{array}$
$\begin{array}{ll}\text { Parallel: } & \frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\ & R_{\mathrm{T}}=\frac{1}{2} R\end{array} \quad I=\frac{2 V}{R}$

Compare I_{1} and I_{2}. The larger value will indicate a parallel network, the smaller one the series network.

Method 2

Procedure:

Connect both boxes and battery in parallel. Measure the current into (or out of) box $1, I_{1}$, and box $2, I_{2}$.

Analysis: Since the potential drop across resistances placed in parallel is the same

Series:

$$
\begin{aligned}
& R_{\mathrm{T}}=R_{1}+R_{2} \\
& R_{\mathrm{N}}=2 R
\end{aligned}
$$

$$
I=\frac{V}{2 R}
$$

$\begin{array}{ll}\text { Parallel: } & \frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\ & R_{\mathrm{T}}=\frac{1}{2} R\end{array} \quad I=\frac{2 V}{R}$
Compare I_{1} and I_{2}. The larger value will indicate a parallel network, the smaller one the series network.

Method 3

Procedure:

Connect both boxes and battery in series. Measure the potential drop across box 1, V_{1}, and across box $2, V_{2}$. The voltmeter must be placed in parallel with each box.

Analysis: Since the current in a series circuit is constant,
Series: $\quad \begin{aligned} R_{\mathrm{T}} & =R_{1}+R_{2} \\ & =2 R\end{aligned} \quad V=2 I R$

$$
R_{\mathrm{T}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}
$$

Parallel:

$$
=\frac{1}{2} R
$$

$$
V=\frac{1}{2} I R
$$

Compare V_{1} and V_{2}. The larger value will indicate the series network, the smaller one the parallel network.

Scoring Guide for Anaholistic Questions

Major Concepts: Decay equations; Half-life; Graphing; Risks and benefits of the effect of radiation on biological tissue	
Score	Criteria
5	In the response, the student - uses an appropriate method that reflects an excellent understanding of all major concepts - provides a complete description of the method used and shows a complete solution for the problem - states formulas explicitly - may make a minor error, omission, or inconsistency; however, this does not hinder the understanding of the physics content - draws diagrams that are appropriate, correct, and complete - may have an error in significant digits or rounding
4	In the response, the student - uses an appropriate method that reflects a good understanding of all major concepts or that reflects an excellent understanding of three of the major concepts - provides explanations that are correct and detailed - states most formulas explicitly and applies them correctly - makes minor errors, omissions, or inconsistencies in calculations and/or substitutions; however, these do not hinder the understanding of the physics content - draws most diagrams appropriately, correctly, and completely - may have errors in units, significant digits, rounding, or graphing
3	In the response, the student - uses an appropriate method that reflects a basic understanding of all four of the major concepts or that reflects a good understanding of three of the major concepts - uses an appropriate method that reflects an excellent understanding of two of the major concepts and that reflects a basic understanding of one of the two remaining concepts - uses formulas and/or diagrams that may be implicit, and these are applied correctly; however, errors in calculations and/or substitutions that hinder the understanding of the physics content are present - provides explanations that are correct but lack detail - has a major omission or inconsistency
2	In the response, the student - uses an appropriate method that reflects a basic understanding of three of the four major concepts or that reflects a good understanding of two of the major concepts - gives formulas and/or diagrams that are implicitly correct; however, they are not applied to determine the final solution or errors in the application of equations are present, but the answer is consistent with calculated results
1	In the response, the student - attempts at least two of the major concepts or uses an appropriate method that reflects a good understanding of one of the major concepts - makes errors in the formulas, diagrams, and/or explanations, and the answer is not consistent with calculated results
0	In the response, the student - identifies an area of physics that does not apply to the major concepts - uses inappropriate formulas, diagrams, and/or explanations
NR	No response is given.

> Use the following information to answer the next question.

Iodine-131 is a radioactive element used in the medical diagnosis and treatment of thyroid problems. Iodine-131 undergoes simultaneous beta and gamma decay and has a half-life of 8.00 days.

Written Response-15\%

2. - Write the complete decay equation for iodine-131.

- Complete the table below by entering the amount of iodine-131 remaining over 40 days.
- Explain how you obtained data for the table.
- Provide a graph of the theoretical decay of 2.00 g of iodine- 131 .

Time (days)	0	8	16	24	32	40
Mass (g)	2.00					

\qquad

Use the following additional information to answer the next parts of the question.
The thyroid gland uses iodine to make hormones that the human body needs. The thyroid gland is the only tissue in the human body that collects iodine. An overactive thyroid gland that causes medical problems can be treated with a high dose of iodine-131, which destroys the thyroid gland only.

- A treatment centre receives a shipment of 5.00 g of iodine-131. The treatment centre stores the iodine-131. What is the amount of iodine-131 remaining after 3.00 days?
- Identify at least two risks and one benefit of using radioactive isotopes in medical treatments.

Clearly communicate your understanding of the physics principles that you are using to solve this question. You may communicate this understanding mathematically, graphically, and/or with written statements.

Sample Solution

- Write the complete decay equation for a iodine-131
${ }_{53}^{131} \mathrm{I} \rightarrow{ }_{54}^{131} \mathrm{Xe}+{ }_{-1}^{0} \beta+\gamma$
NOTE: students may use the notation of ${ }_{-1}^{0} \beta$ or ${ }_{-1}^{0} \mathrm{e}$ or ${ }_{0}^{0} \gamma$ or "gamma"
- Complete the table by writing the amount of iodine-131 remaining over 40 days.

Time (days)	0	8	16	24	32	40
Mass (g)	2.00	1.00	0.50	0.25	0.13	0.06

Method 1:

One half life means that half the iodine- 131 decays in 8 days. So, at 8 days there is 1.00 g left, at 16 days 0.50 g is left and so on.

Method 2:

$$
\begin{aligned}
& N=N_{0}\left(\frac{1}{2}\right)^{n} \\
& N=2.00 g\left(\frac{1}{2}\right)^{1}
\end{aligned}
$$

- Provide a graph of the theoretical decay of 2.00 g of iodine-131.

Graph 1

Mass of Iodine-131 as a Function of Time

Graph 3

Mass of Iodine-131 as a Function of Time

This is a calculator picture where time (days) entered in L1 and mass (g) is entered in L2
$x[-4,44,2]$
$y:[-0.2698,2.3298,2]$
and the regression used: ExpReg $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{Y}$ gives

$$
\begin{aligned}
& y=a * b^{x} \\
& a=2.011 \\
& b=0.9167
\end{aligned}
$$

- A treatment centre receives a shipment of 5.00 g of iodine-131. The treatment centre stores the iodine-131. What is the amount of iodine-131 remaining after 3.00 days?

Method 1:

$$
\begin{aligned}
& N=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{t_{1 / 2}}} \\
& N=(5.00 \mathrm{~g})\left(\frac{1}{2}\right)^{\frac{3.00 \text { days }}{8.00 \text { days }}} \\
& N=3.86 \mathrm{~g}
\end{aligned}
$$

Method 2:

Using the graph and ratios.
For the 2.00 g sample, at 3 days the amount remaining is 1.55 g . (data read from graph)

$$
\begin{aligned}
& \frac{2.00 g}{1.55 g}=\frac{5.00 g}{x} \\
& x=3.88 \mathrm{~g}
\end{aligned}
$$

- Identify two risks and one benefit of using radioactive isotopes in medical treatments

Risks: A risk is a possible outcome that is explicitly communicated as being negative. The negative could be in terms of health, cost, depletion of stock, etc.

- Exposure of patient to radiation to other tissues, not just the thyroid gland
- Accidental exposure of medical staff to radiation
- Daughter nucleus may be toxic
- Decay chain may contain radioactive daughter nuclei
- Ionizing radiation may cause physical damage to existing cells (radiation burns, somatic damage)
- Ionizing radiation may cause genetic damage (damage or breaking to DNA, gene line mutations)
- Ionizing radiation may cause free radicals that would cause tissue damage
- The short half life means the clinic must be shipping in small amounts which is expensive

Benefits: A benefit is a possible outcome that is explicitly communicated as being positive.

- Treatment targets overactive gland
- Short half-life reduces exposure
- Less invasive than surgery
- Cancer treatments possible
- Allows for PET and CAT scans

Note: The risk and benefit cited should not be negatives of each other.

